CONGRUENCE RELATIONS FOR KTH-ORDER LINEAR RECURRENCES

被引:0
|
作者
SOMER, L [1 ]
机构
[1] CATHOLIC UNIV AMER,WASHINGTON,DC 20064
来源
FIBONACCI QUARTERLY | 1989年 / 27卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [1] Special multipliers of kth-order linear recurrences modulo pr
    Somer, Lawrence
    [J]. FIBONACCI QUARTERLY, 2007, 45 (01): : 10 - 21
  • [2] Model-order reduction of large-scale kth-order linear dynamical systems via a kth-order Arnoldi method
    Lin, Yiqin
    Bao, Liang
    Wei, Yimin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (02) : 435 - 453
  • [3] KTH-ORDER FINITE AUTOMATON
    LIU, CL
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1964, EC13 (05) : 642 - &
  • [4] A remark on kth-order linear functional equations with constant coefficients
    Laitochova, Jitka
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)
  • [5] Applications of matrix theory to congruence properties of kth-order F-L sequences
    Zhou, CZ
    [J]. FIBONACCI QUARTERLY, 2003, 41 (01): : 48 - 58
  • [6] Generation of kth-order random toposequences
    Odgers, Nathan P.
    McBratney, Alex. B.
    Minasny, Budiman
    [J]. COMPUTERS & GEOSCIENCES, 2008, 34 (05) : 479 - 490
  • [7] SPECTRUM OF A kth-ORDER SLANT HANKEL OPERATOR
    Arora, S. C.
    Bhola, Jyoti
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (02): : 175 - 183
  • [8] Some invariants for kth-order Lyness equation
    Gao, M
    Kato, Y
    Ito, M
    [J]. APPLIED MATHEMATICS LETTERS, 2004, 17 (10) : 1183 - 1189
  • [9] On a new kth-order quadratic learning algorithm
    Tan, SH
    Zhang, XH
    Zhu, Q
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (02): : 186 - 190
  • [10] Commutativity of kth-order slant Toeplitz operators
    Lu, Yufeng
    Liu, Chaomei
    Yang, Jun
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (09) : 1304 - 1313