Commutativity of kth-order slant Toeplitz operators

被引:7
|
作者
Lu, Yufeng [1 ]
Liu, Chaomei [1 ]
Yang, Jun [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Toeplitz operator; k(th)-order slant Toeplitz operator; commutativity; Bergman space; PLURIHARMONIC SYMBOLS; HARMONIC SYMBOLS; BERGMAN SPACES; ADJOINTS;
D O I
10.1002/mana.200710100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, commutativity of k(th)-order slant Toeplitz operators are discussed. We show that commutativity and essential commutativity of two slant Toeplitz operators are the same. Also, we study k(th)-order slant Toeplitz operators on the Bergman space L-a(2)(D) and give some commuting properties, algebraic and spectral properties of k(th)-order slant Toeplitz operators on the Bergman space. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1304 / 1313
页数:10
相关论文
共 50 条
  • [41] Least kth-Order and Renyi Generative Adversarial Networks
    Bhatia, Himesh
    Paul, William
    Alajaji, Fady
    Gharesifard, Bahman
    Burlina, Philippe
    [J]. NEURAL COMPUTATION, 2021, 33 (09) : 2473 - 2510
  • [42] Commutativity of Toeplitz operators on the harmonic Dirichlet space
    Zhao, Liankuo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1148 - 1160
  • [43] kth-order Markov extremal models for assessing heatwave risks
    Winter, Hugo C.
    Tawn, Jonathan A.
    [J]. EXTREMES, 2017, 20 (02) : 393 - 415
  • [44] Special multipliers of kth-order linear recurrences modulo pr
    Somer, Lawrence
    [J]. FIBONACCI QUARTERLY, 2007, 45 (01): : 10 - 21
  • [45] A remark on kth-order linear functional equations with constant coefficients
    Laitochova, Jitka
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)
  • [46] On a non-autonomous kth-order rational difference equation
    Papaschinopoulos, G.
    Schinas, C. J.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (06) : 645 - 655
  • [47] Optimal Solution For System of kth-order Fuzzy Differential Equations
    Nobakht, F.
    Kamyad, A. V.
    Atazandi, G. H.
    Zare, A.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 3 (03): : 346 - 356
  • [48] kth-order Markov extremal models for assessing heatwave risks
    Hugo C. Winter
    Jonathan A. Tawn
    [J]. Extremes, 2017, 20 : 393 - 415
  • [49] IMPROVED ALGORITHM FOR CONSTRUCTING KTH-ORDER VORONOI DIAGRAMS.
    Chazelle, Bernard
    Edelsbrunner, Herbert
    [J]. IEEE Transactions on Computers, 1987, C-36 (11) : 1349 - 1354
  • [50] On the kth-order derivative sequences of generalized Fibonacci and Lucas polynomials
    Djordjevic, GB
    [J]. FIBONACCI QUARTERLY, 2005, 43 (04): : 290 - 298