NORDHAUS-GADDUM INEQUALITIES FOR THE NUMBER OF CONNECTED INDUCED SUBGRAPHS IN GRAPHS

被引:1
|
作者
Andriantiana, Eric O. D. [1 ]
Dossou-Olory, Audace A. V. [2 ]
机构
[1] Rhodes Univ, Dept Math Pure & Appl, POB 94, ZA-6140 Grahamstown, South Africa
[2] Univ Johannesburg, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Primary; Secondary; Nordhaus-Gaddum inequalities; induced subgraphs; connected graphs; trees; pendent vertices; SUBTREES; TREES;
D O I
10.2989/16073606.2021.1934178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let eta(G) be the number of connected induced subgraphs in a graph G, and (G) over bar the complement of G. We prove that eta(G) + eta((G) over bar) is minimum, among all n-vertex graphs, if and only if G has no induced path on four vertices. Since the n-vertex star S-n with maximum degree n - 1 is the unique tree of diameter 2, eta(S-n) + eta((S) over bar (n))is minimum among all n-vertex trees, while the maximum is shown to be achieved only by the tree whose degree sequence is (inverted left parpandicular n/2 inverted right parpendicular, left parpandicular n/2 right parpandicular , 1, ... , 1). Furthermore, we prove that every graph G of n >= 5 order n >= 5 and with maximum eta(G) + eta((G) over bar) must have diameter at most 3, no cut vertex and the property that (G) over bar is also connected. In both cases of trees and graphs that have the same order, we find that if eta(G) is maximum then eta(G) + eta((G) over bar) is minimum. As corollaries to our results, we characterise the unique connected graph G of given order and number of vertices of degree 1, and the unique connected graph G of a given order satisfying vertical bar V (G)vertical bar = vertical bar E(G)vertical bar that minimises eta(G) + eta((G) over bar).
引用
收藏
页码:1191 / 1213
页数:23
相关论文
共 50 条
  • [1] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    [J]. DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [2] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [3] NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED DOMINATION NUMBER OF GRAPHS
    Murugan, E.
    Joseph, J. Paulraj
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04): : 505 - 519
  • [4] Nordhaus-Gaddum type inequalities on the total Italian domination number in graphs
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    [J]. RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2235 - 2243
  • [5] PRODUCTS OF GRAPHS AND NORDHAUS-GADDUM TYPE INEQUALITIES
    Keyvan, Nastran
    Rahmati, Farhad
    [J]. TRANSACTIONS ON COMBINATORICS, 2018, 7 (01) : 30 - 35
  • [6] Split graphs and Nordhaus-Gaddum graphs
    Cheng, Christine
    Collins, Karen L.
    Trenk, Ann N.
    [J]. DISCRETE MATHEMATICS, 2016, 339 (09) : 2345 - 2356
  • [7] A note on Nordhaus-Gaddum inequalities for domination
    Shan, EF
    Dang, CY
    Kang, LY
    [J]. DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 83 - 85
  • [8] The Nordhaus-Gaddum type inequalities of Aα-matrix
    Huang, Xing
    Lin, Huiqiu
    Xue, Jie
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [9] NORDHAUS-GADDUM TYPE INEQUALITIES FOR MULTIPLE DOMINATION AND PACKING PARAMETERS IN GRAPHS
    Mojdeh, Doost Ali
    Samadi, Babak
    Volkmann, Lutz
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (01) : 154 - 162
  • [10] Nordhaus-Gaddum type inequalities for the kth Laplacian
    Li, Wen-Jun
    Guo, Ji-Ming
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):