NORDHAUS-GADDUM INEQUALITIES FOR THE NUMBER OF CONNECTED INDUCED SUBGRAPHS IN GRAPHS

被引:1
|
作者
Andriantiana, Eric O. D. [1 ]
Dossou-Olory, Audace A. V. [2 ]
机构
[1] Rhodes Univ, Dept Math Pure & Appl, POB 94, ZA-6140 Grahamstown, South Africa
[2] Univ Johannesburg, Dept Math & Appl Math, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Primary; Secondary; Nordhaus-Gaddum inequalities; induced subgraphs; connected graphs; trees; pendent vertices; SUBTREES; TREES;
D O I
10.2989/16073606.2021.1934178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let eta(G) be the number of connected induced subgraphs in a graph G, and (G) over bar the complement of G. We prove that eta(G) + eta((G) over bar) is minimum, among all n-vertex graphs, if and only if G has no induced path on four vertices. Since the n-vertex star S-n with maximum degree n - 1 is the unique tree of diameter 2, eta(S-n) + eta((S) over bar (n))is minimum among all n-vertex trees, while the maximum is shown to be achieved only by the tree whose degree sequence is (inverted left parpandicular n/2 inverted right parpendicular, left parpandicular n/2 right parpandicular , 1, ... , 1). Furthermore, we prove that every graph G of n >= 5 order n >= 5 and with maximum eta(G) + eta((G) over bar) must have diameter at most 3, no cut vertex and the property that (G) over bar is also connected. In both cases of trees and graphs that have the same order, we find that if eta(G) is maximum then eta(G) + eta((G) over bar) is minimum. As corollaries to our results, we characterise the unique connected graph G of given order and number of vertices of degree 1, and the unique connected graph G of a given order satisfying vertical bar V (G)vertical bar = vertical bar E(G)vertical bar that minimises eta(G) + eta((G) over bar).
引用
收藏
页码:1191 / 1213
页数:23
相关论文
共 50 条
  • [41] A Nordhaus-Gaddum conjecture for the minimum number of distinct eigenvalues of a graph
    Levene, Rupert H.
    Oblak, Polona
    Smigoc, Helena
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 564 : 236 - 263
  • [42] Nordhaus-Gaddum type inequalities for the two largest Laplacian eigenvalues
    Grijo, Rodrigo
    de Lima, Leonardo
    Oliveira, Carla
    Porto, Guilherme
    Trevisan, Vilmar
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 176 - 183
  • [43] Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement
    Johannes H.HATTINGH
    Ossama A.SALEH
    Lucas C.VAN DER MERWE
    Terry J.WALTERS
    [J]. Acta Mathematica Sinica,English Series, 2012, (12) : 2365 - 2372
  • [44] New Bounds of the Nordhaus-Gaddum Type of the Laplacian Matrix of Graphs
    Wang, Tianfei
    Li, Bin
    Zou, Jin
    Sun, Feng
    Zhang, Zhihe
    [J]. PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 411 - 414
  • [45] Nordhaus-Gaddum bounds for total domination
    Henning, Michael A.
    Joubert, Ernst J.
    Southey, Justin
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 987 - 990
  • [46] A Nordhaus-Gaddum bound for Roman domination
    Rad, Nader Jafari
    Rahbani, Hadi
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [47] On Nordhaus-Gaddum type inequalities for the game chromatic and game coloring numbers
    Charpentier, Clement
    Dantas, Simone
    de Figueiredo, Celina M. N.
    Furtado, Ana
    Gravier, Sylvain
    [J]. DISCRETE MATHEMATICS, 2019, 342 (05) : 1318 - 1324
  • [48] Nordhaus-Gaddum bounds for independent domination
    Goddard, W
    Henning, MA
    [J]. DISCRETE MATHEMATICS, 2003, 268 (1-3) : 299 - 302
  • [49] Eigenvalue problems of Nordhaus-Gaddum type
    Nikiforov, Vladimir
    [J]. DISCRETE MATHEMATICS, 2007, 307 (06) : 774 - 780
  • [50] Extremal decompositions for Nordhaus-Gaddum theorems
    Bickle, Allan
    [J]. DISCRETE MATHEMATICS, 2023, 346 (07)