Nordhaus-Gaddum type inequalities for the kth Laplacian

被引:0
|
作者
Li, Wen-Jun [1 ]
Guo, Ji-Ming [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 01期
基金
中国国家自然科学基金;
关键词
EIGENVALUE PROBLEMS; SIGNLESS LAPLACIAN; GRAPH; SPREAD;
D O I
10.37236/12008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph and mu(1)(G)>=mu(2)(G)>=& ctdot;>=mu(n)(G) be the Laplacian eigenvalues of G. Let G be the complement of G. Einollahzadeh et al.[J. Combin. Theory Ser. B, 151(2021), 235-249] proved that mu(n-1)(G)+mu(n-1)(G)>= 1. Grij & ograve; et al. [Discrete Appl. Math., 267(2019), 176-183] conjectured that mu(n-2)(G)+mu(n-2)(G)>= 2 for any graph and proved it to be true for some graphs. In this paper, we prove mu(n-2)(G)+mu(n-2)(G)>= 2 is true for some new graphs. Furthermore, we propose a more general conjecture that mu(k)(G)+mu(()(k)G)>= n-k holds for any graph G, with equality if and only if G or G is isomorphic to Kn-k boolean OR H, where H is a disconnected graph on k vertices and has at least n-k+1 connected components. And we prove that it is true for k <= n+1/2, for unicyclic graphs, bicyclic graphs, threshold graphs, bipartite graphs, regular graphs, complete multipartite graphs and c-cyclic graphs when n >= 2c+8.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Nordhaus-Gaddum type inequalities for Laplacian and signless Laplacian eigenvalues
    Ashraf, F.
    Tayfeh-Rezaie, B.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [2] Nordhaus-Gaddum type inequalities for the two largest Laplacian eigenvalues
    Grijo, Rodrigo
    de Lima, Leonardo
    Oliveira, Carla
    Porto, Guilherme
    Trevisan, Vilmar
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 267 : 176 - 183
  • [3] The Nordhaus-Gaddum type inequalities of Aα-matrix
    Huang, Xing
    Lin, Huiqiu
    Xue, Jie
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [4] Nordhaus-Gaddum type inequalities for the distinguishing index
    Pilsniak, Monika
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2021, 20 (02) : 223 - 231
  • [5] PRODUCTS OF GRAPHS AND NORDHAUS-GADDUM TYPE INEQUALITIES
    Keyvan, Nastran
    Rahmati, Farhad
    [J]. TRANSACTIONS ON COMBINATORICS, 2018, 7 (01) : 30 - 35
  • [6] Signless Laplacian eigenvalue problems of Nordhaus-Gaddum type
    Huang, Xueyi
    Lin, Huiqiu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 336 - 353
  • [7] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    [J]. DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [8] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72
  • [9] A note on Nordhaus-Gaddum inequalities for domination
    Shan, EF
    Dang, CY
    Kang, LY
    [J]. DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 83 - 85
  • [10] New Bounds of the Nordhaus-Gaddum Type of the Laplacian Matrix of Graphs
    Wang, Tianfei
    Li, Bin
    Zou, Jin
    Sun, Feng
    Zhang, Zhihe
    [J]. PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 411 - 414