NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED DOMINATION NUMBER OF GRAPHS

被引:0
|
作者
Murugan, E. [1 ]
Joseph, J. Paulraj [2 ]
机构
[1] CSI Jayaraj Annapackiam Coll, Dept Math, Nallur 627853, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, Tamil Nadu, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2023年 / 31卷 / 04期
关键词
connected domination number; line graph; subdivision graph; power graph; block graph; total graph;
D O I
10.11568/kjm.2023.31.4.505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let G = (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number gamma(G) of G is the minimum cardinality taken over all dominating sets of G. A dominating set S is called a connected dominating set if the subgraph induced by S is connected. The minimum cardinality taken over all connected dominating sets of G is called the connected domination number of G, and is denoted by gamma c(G). In this paper, we investigate the Nordhaus-Gaddum type results for the connected domination number and its derived graphs like line graph, subdivision graph, power graph, block graph and total graph, and characterize the extremal graphs.
引用
收藏
页码:505 / 519
页数:15
相关论文
共 50 条
  • [1] NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED AND TOTAL DOMINATION
    Khoeilar, Rana
    Karami, Hossein
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    [J]. RAIRO-OPERATIONS RESEARCH, 2021, 55 : S853 - S862
  • [2] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [3] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    [J]. DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [4] Nordhaus-Gaddum type inequalities on the total Italian domination number in graphs
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    [J]. RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2235 - 2243
  • [5] Inequality of Nordhaus-Gaddum Type for Total Outer-connected Domination in Graphs
    Jiang, Hong Xing
    Kang, Li Ying
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) : 607 - 616
  • [6] Inequality of Nordhaus-Gaddum type for total outer-connected domination in graphs
    Hong Xing Jiang
    Li Ying Kang
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 607 - 616
  • [7] NORDHAUS-GADDUM RESULTS FOR THE CONVEX DOMINATION NUMBER OF A GRAPH
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Gonzalez Yero, I.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2012, 65 (01) : 125 - 134
  • [8] Nordhaus-Gaddum results for the convex domination number of a graph
    M. Lemańska
    J. A. Rodríguez-Velázquez
    I. Gonzalez Yero
    [J]. Periodica Mathematica Hungarica, 2012, 65 : 125 - 134
  • [9] Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs
    Hattingh, Johannes H.
    Jonck, Elizabeth
    Joubert, Ernst J.
    Plummer, Andrew R.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (07) : 1080 - 1087
  • [10] Multiple factor Nordhaus-Gaddum type results for domination and total domination
    Henning, Michael A.
    Joubert, Ernst J.
    Southey, Justin
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1137 - 1142