Assessment of the technology readiness of post-combustion CO2 capture technologies

被引:11
|
作者
Freeman, Brice C. [1 ]
Bhown, Abhoyjit S. [1 ]
机构
[1] Elect Power Res Inst, Palo Alto, CA 94304 USA
关键词
CO2; technology readiness levels; post-combustion capture;
D O I
10.1016/j.egypro.2011.02.055
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Electric Power Research Institute (EPRI) has an active program to review and conduct technical due diligence on emerging post-combustion CO2 capture technologies. The capture technology types include absorption, adsorption, membrane separation, mineralization and biofixation based capture processes for either new or retrofit applications with coal fired power plants. In addition to collecting and characterizing key process and performance data, each of the ninety two processes reviewed was assigned a Technology Readiness Level (TRL) and, when possible, the progression of the technology through TRL steps was recorded. The resulting body of work provides a unique perspective on the relative rates of maturity of capture technologies across all classes. More important, it provides insights into the actual rates of commercialization. This information helps stakeholders better understand the rate at which capture technologies develop and when capture technologies at different stages of development might reach the market. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:1791 / 1796
页数:6
相关论文
共 50 条
  • [41] Comparison of current and advanced post-combustion CO2 capture technologies for power plant applications
    Gonzalez-Salazar, Miguel A.
    Perry, Robert J.
    Vipperla, Ravi-Kumar
    Hernandez-Nogales, Alvaro
    Nord, Lars O.
    Michelassi, Vittorio
    Shisler, Roger
    Lissianski, Vitali
    6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 3 - 14
  • [42] Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies
    Yu, Hai
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (11) : 2255 - 2265
  • [43] Conceptual Design of Post-Combustion CO2 Capture Processes - Packed Columns and Membrane Technologies
    Leimbrink, Mathias
    Kunze, Anna-Katharina
    Hellmann, David
    Gorak, Andrzej
    Skiborowski, Mirko
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1223 - 1228
  • [44] Evaluation and Comparison of the Part Load Behaviour of the CO2 Capture Technologies Oxyfuel and Post-Combustion
    Roeder, Volker
    Hasenbein, Christoph
    Kather, Alfons
    GHGT-11, 2013, 37 : 2420 - 2431
  • [45] Assessment of different methods of CO2 capture in post-combustion using ammonia as solvent
    Toro Molina, Carol
    Bouallou, Chakib
    JOURNAL OF CLEANER PRODUCTION, 2015, 103 : 463 - 468
  • [46] Technical and economic assessment of ammonia-based post-combustion CO2 capture
    Versteeg, Peter
    Rubin, Edward S.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1957 - 1964
  • [47] An update of the benchmark post-combustion CO2-capture technology
    Feron, Paul H. M.
    Cousins, Ashleigh
    Jiang, Kaiqi
    Zhai, Rongrong
    Garcia, Monica
    FUEL, 2020, 273
  • [48] Post-Combustion Carbon Capture Technologies
    Horn, Julie
    Zbacnik, Raymond
    CHEMICAL ENGINEERING, 2015, 122 (03) : 72 - 75
  • [49] Chemical looping for pre-combustion and post-combustion CO2 capture
    Mantripragada, Hari C.
    Rubin, Edward S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6403 - 6410
  • [50] CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture
    Yu, W.
    Wang, T.
    Fang, M. X.
    Hei, H.
    Luo, Z. Y.
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 591 - 596