Assessment of the technology readiness of post-combustion CO2 capture technologies

被引:11
|
作者
Freeman, Brice C. [1 ]
Bhown, Abhoyjit S. [1 ]
机构
[1] Elect Power Res Inst, Palo Alto, CA 94304 USA
关键词
CO2; technology readiness levels; post-combustion capture;
D O I
10.1016/j.egypro.2011.02.055
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Electric Power Research Institute (EPRI) has an active program to review and conduct technical due diligence on emerging post-combustion CO2 capture technologies. The capture technology types include absorption, adsorption, membrane separation, mineralization and biofixation based capture processes for either new or retrofit applications with coal fired power plants. In addition to collecting and characterizing key process and performance data, each of the ninety two processes reviewed was assigned a Technology Readiness Level (TRL) and, when possible, the progression of the technology through TRL steps was recorded. The resulting body of work provides a unique perspective on the relative rates of maturity of capture technologies across all classes. More important, it provides insights into the actual rates of commercialization. This information helps stakeholders better understand the rate at which capture technologies develop and when capture technologies at different stages of development might reach the market. (C) 2011 Published by Elsevier Ltd.
引用
下载
收藏
页码:1791 / 1796
页数:6
相关论文
共 50 条
  • [1] Evaluation of Post-Combustion CO2 Capture Technologies
    Li, Yuan
    Wang, Qimin
    Wang, Peibin
    RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-4, 2013, 734-737 : 1881 - 1886
  • [2] Analysis and status of post-combustion CO2 capture technologies
    Bhown, Abhoyjit S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [3] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884
  • [4] Assessment of solid sorbents as a competitive post-combustion CO2 capture technology
    Glier, Justin C.
    Rubin, Edward S.
    GHGT-11, 2013, 37 : 65 - 72
  • [5] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [6] MODELING OF THE CO2 CAPTURE IN POST-COMBUSTION
    Amann, Jean-Marc
    Descamps, Cathy
    Kanniche, Mohamed
    Bouallou, Chakib
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2007, 8 (01): : 77 - 90
  • [7] Overview Post-combustion CO2 capture
    Romeo, L. M.
    Bolea, I.
    BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2015, (35): : 8 - 11
  • [8] Status and analysis of next generation post-combustion CO2 capture technologies
    Bhown, Abhoyjit S.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 542 - 549
  • [9] Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants
    Galusnyak, Stefan Cristian
    Petrescu, Letitia
    Cormos, Calin-Cristian
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 320
  • [10] Destroying nitrosamines in post-combustion CO2 capture
    Chandan, Payal
    Harrison, Emily
    Honchul, Sarah
    Li, Jiren
    Thompson, Jesse
    Liu, Kunlei
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 808 - 813