Lupas type Bernstein operators on triangles based on quantum analogue

被引:4
|
作者
Khan, Asif [1 ]
Mansoori, M. S. [1 ]
Khan, Khalid [2 ]
Mursaleen, M. [1 ,3 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] JNU, SC&SS, Sch Comp & Syst Sci, New Delhi 110067, India
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Lupas q-Bernstein operators; Product operators; Boolean sum operators; Modulus of continuity; Peano's theorem; Error estimation; INTERPOLATION;
D O I
10.1016/j.aej.2021.04.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of the paper is to introduce new analogues of Lupas type Bernstein operators (B-m,q(u) f) (u, v) and (B-n,q(u) f) (u, v), their products (P(mn,q)f) (u,v) and (Q(nm,q)f) (u, v) and their Boolean sums (S(mn,q)f) (u, v) and (T(nm,q)f) (u, v) on triangle T-h, which interpolate a given function on the some edges and at the vertices of triangle using quantum analogue. Based on Peano's theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. It has been shown that parameter q will provide more flexibility for approximation. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:5909 / 5919
页数:11
相关论文
共 50 条
  • [41] QUANTITATIVE VORONOVSKAYA TYPE THEOREMS AND GBS OPERATORS OF KANTOROVICH VARIANT OF LUPAS-STANCU OPERATORS BASED ON POLYA DISTRIBUTION
    Bawa, Parveen
    Bhardwaj, Neha
    Agrawal, P. N.
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (04): : 269 - 293
  • [42] ON BERNSTEIN-STANCU TYPE OPERATORS
    Gavrea, I.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 81 - 88
  • [43] ON SMOOTHNESS CHARACTERIZED BY BERNSTEIN TYPE OPERATORS
    ZHOU, DX
    JOURNAL OF APPROXIMATION THEORY, 1995, 81 (03) : 303 - 315
  • [44] On the rates of approximation of Bernstein type operators
    Zeng, XM
    Cheng, FF
    JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) : 242 - 256
  • [45] BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS
    Blaga, Petru
    Catinas, Teodora
    Coman, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (04): : 3 - 18
  • [46] Perturbed Bernstein-type operators
    Ana-Maria Acu
    Heiner Gonska
    Analysis and Mathematical Physics, 2020, 10
  • [47] a-Bernstein-Integral Type Operators
    Yadav, Jyoti
    Mohiuddine, Syed Abdul
    Kajla, Arun
    Alotaibi, Abdullah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [48] Perturbed Bernstein-type operators
    Acu, Ana-Maria
    Gonska, Heiner
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [49] SOME BERNSTEIN-TYPE OPERATORS
    PAPANICOLAU, GC
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (06): : 674 - 677
  • [50] Statistical approximation properties of King-type modification of Lupas operators
    Dogru, Ogun
    Kanat, Kadir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 511 - 517