Lupas type Bernstein operators on triangles based on quantum analogue

被引:4
|
作者
Khan, Asif [1 ]
Mansoori, M. S. [1 ]
Khan, Khalid [2 ]
Mursaleen, M. [1 ,3 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] JNU, SC&SS, Sch Comp & Syst Sci, New Delhi 110067, India
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Lupas q-Bernstein operators; Product operators; Boolean sum operators; Modulus of continuity; Peano's theorem; Error estimation; INTERPOLATION;
D O I
10.1016/j.aej.2021.04.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of the paper is to introduce new analogues of Lupas type Bernstein operators (B-m,q(u) f) (u, v) and (B-n,q(u) f) (u, v), their products (P(mn,q)f) (u,v) and (Q(nm,q)f) (u, v) and their Boolean sums (S(mn,q)f) (u, v) and (T(nm,q)f) (u, v) on triangle T-h, which interpolate a given function on the some edges and at the vertices of triangle using quantum analogue. Based on Peano's theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. It has been shown that parameter q will provide more flexibility for approximation. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:5909 / 5919
页数:11
相关论文
共 50 条
  • [31] ESTIMATES FOR BERNSTEIN TYPE OPERATORS
    Finta, Zoltan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 127 - 135
  • [32] Lupas-Kantorovich Type Operators for Functions of Two Variables
    Agrawal, P. N.
    Kumar, Abhishek
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 17 - 36
  • [33] Some Smoothness Properties of the Lupas-Kantorovich Type Operators Based on Polya Distribution
    Kajla, Arun
    Miclaus, Dan
    FILOMAT, 2018, 32 (11) : 3867 - 3880
  • [34] APPROXIMATION BY THE SUMMATION INTEGRAL TYPE OPERATORS BASED ON LUPAS-SZASZ BASIS FUNCTIONS
    Manav, Nesibe
    Ispir, Nurhayat
    JOURNAL OF SCIENCE AND ARTS, 2018, (04): : 853 - 868
  • [35] Generalized blending type Bernstein operators based on the shape parameter λ
    Halil Gezer
    Hüseyin Aktuğlu
    Erdem Baytunç
    Mehmet Salih Atamert
    Journal of Inequalities and Applications, 2022
  • [36] LUPAS-DURRMEYER OPERATORS BASED ON POLYA DISTRIBUTION
    Gupta, Vijay
    Rassias, Themistocles M.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02): : 146 - 155
  • [37] Generalized blending type Bernstein operators based on the shape parameter λ
    Gezer, Halil
    Aktuglu, Huseyin
    Baytunc, Erdem
    Atamert, Mehmet Salih
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [38] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [39] Q-Analogue of Generalized Bernstein-Kantorovich Operators
    Pratap, Ram
    Deo, Naokant
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 67 - 75
  • [40] BERNSTEIN-TYPE OPERATORS AND THEIR DERIVATIVES
    DITZIAN, Z
    IVANOV, K
    JOURNAL OF APPROXIMATION THEORY, 1989, 56 (01) : 72 - 90