Lupas type Bernstein operators on triangles based on quantum analogue

被引:4
|
作者
Khan, Asif [1 ]
Mansoori, M. S. [1 ]
Khan, Khalid [2 ]
Mursaleen, M. [1 ,3 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] JNU, SC&SS, Sch Comp & Syst Sci, New Delhi 110067, India
[3] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Lupas q-Bernstein operators; Product operators; Boolean sum operators; Modulus of continuity; Peano's theorem; Error estimation; INTERPOLATION;
D O I
10.1016/j.aej.2021.04.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of the paper is to introduce new analogues of Lupas type Bernstein operators (B-m,q(u) f) (u, v) and (B-n,q(u) f) (u, v), their products (P(mn,q)f) (u,v) and (Q(nm,q)f) (u, v) and their Boolean sums (S(mn,q)f) (u, v) and (T(nm,q)f) (u, v) on triangle T-h, which interpolate a given function on the some edges and at the vertices of triangle using quantum analogue. Based on Peano's theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. It has been shown that parameter q will provide more flexibility for approximation. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:5909 / 5919
页数:11
相关论文
共 50 条
  • [21] Approximation by Lupas-Type Operators and Szasz-Mirakyan-Type Operators
    Jung, Hee Sun
    Sakai, Ryozi
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [22] SUMMATION-INTEGRAL TYPE OPERATORS BASED ON LUPAS-JAIN FUNCTIONS
    Manav, Nesibe
    Ispir, Nurhayat
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 309 - 322
  • [23] On certain family of mixed summation integral type two-dimensional q-Lupas-Phillips-Bernstein operators
    Sharma, Honey
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 741 - 752
  • [24] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [25] On statistical approximation properties of the Kantorovich type Lupas operators
    Dogru, Ogun
    Kanat, Kadir
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1610 - 1621
  • [26] On the Image of the Lupaş q-Analogue of the Bernstein Operators
    Övgü Gürel Yılmaz
    Sofiya Ostrovska
    Mehmet Turan
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [27] Bivariate Bernstein type operators
    Bascanbaz-Tunca, Gulen
    Ince-Ilarslan, Hatice Gul
    Erencin, Aysegul
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 543 - 552
  • [28] Differentiated Bernstein Type Operators
    Aral, Ali
    Acar, Tuncer
    Ozsarac, Firat
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2020, 13 : 47 - 54
  • [29] On wavelet type Bernstein operators
    Karsli, H.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 15 (01) : 212 - 221
  • [30] A NOTE ON BERNSTEIN TYPE OPERATORS
    周定轩
    Approximation Theory and Its Applications, 1992, (01) : 97 - 100