Fabrication and Study of Large-Area QHE Devices Based on Epitaxial Graphene

被引:19
|
作者
Novikov, Sergei [1 ]
Lebedeva, Natalia [1 ]
Pierz, Klaus [2 ]
Satrapinski, Alexandre [3 ]
机构
[1] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland
[2] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[3] Ctr Metrol & Accreditat, Espoo 02150, Finland
关键词
Contact resistance; epitaxial graphene; graphene fabrication; precision measurement; quantum Hall effect (QHE);
D O I
10.1109/TIM.2014.2385131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum Hall effect (QHE) devices based on epitaxial graphene films grown on SiC were fabricated and studied for development of the QHE resistance standard. The graphene-metal contacting area in the Hall devices has been improved and fabricated using a double metallization process. The tested devices had an initial carrier concentration of (0.6-10) . 10(11) cm(-2) and showed half-integer QHE at a relatively low (3 T) magnetic field. The application of the photochemical gating method and annealing of the sample provides a convenient way for tuning the carrier density to the optimum value. Precision measurements of the quantum Hall resistance in graphene and GaAs devices at moderate magnetic field strengths (<= 7 T) showed a relative agreement within 6 . 10(-9).
引用
收藏
页码:1533 / 1538
页数:6
相关论文
共 50 条
  • [41] Transfer Tiling of Nanostructures for Large-Area Fabrication
    Kim, Jaekyoung
    Yoon, Hyunsik
    MICROMACHINES, 2018, 9 (11):
  • [42] Progress on large-area polarization grating fabrication
    Miskiewicz, Matthew N.
    Kim, Jihwan
    Li, Yanming
    Komanduri, Ravi K.
    Escuti, Michael J.
    ACQUISITION, TRACKING, POINTING, AND LASER SYSTEMS TECHNOLOGIES XXVI, 2012, 8395
  • [43] Large-area YBCO films for device fabrication
    Tian, YJ
    Linzen, S
    Schmidl, F
    Cihar, R
    Seidel, P
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1998, 11 (01): : 59 - 62
  • [44] Fabrication of large-area nickel nanobump arrays
    Chen, X.
    Wei, X.
    Jiang, K.
    MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 871 - 873
  • [45] Large-area IR negative luminescent devices
    Nash, GR
    Gordon, NT
    Ashley, T
    Erneny, MT
    Burke, TM
    IEE PROCEEDINGS-OPTOELECTRONICS, 2003, 150 (04): : 371 - 375
  • [46] Terahertz and Infrared Conductivity of Large-Area Graphene
    Ren, Lei
    Zhang, Qi
    Booshehri, Layla G.
    Haroz, Erik H.
    Arikawa, Takashi
    Nanot, Sebastien
    Kono, Junichiro
    Sun, Zhengzong
    Yan, Zheng
    Yao, Jun
    Jin, Zhong
    Tour, James M.
    2011 36TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2011,
  • [47] Mapping the electrical properties of large-area graphene
    Boggild, Peter
    Mackenzie, David M. A.
    Whelan, Patrick R.
    Petersen, Dirch H.
    Buron, Jonas Due
    Zurutuza, Amaia
    Gallop, John
    Hao, Ling
    Jepsen, Peter U.
    2D MATERIALS, 2017, 4 (04):
  • [48] Synthesis of large-area graphene for energy applications
    Hong, Byung Hee
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [49] Electroluminescent devices based on polycrystalline silicon films for large-area applications
    Koshida, N
    Takizawa, E
    Mizuno, H
    Arai, S
    Koyama, H
    Sameshima, T
    MATERIALS AND DEVICES FOR SILICON-BASED OPTOELECTRONICS, 1998, 486 : 151 - 156
  • [50] Large-area suspended graphene on GaN nanopillars
    Lee, Chongmin
    Kim, Byung-Jae
    Ren, Fan
    Pearton, S. J.
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (06):