Fabrication and Study of Large-Area QHE Devices Based on Epitaxial Graphene

被引:19
|
作者
Novikov, Sergei [1 ]
Lebedeva, Natalia [1 ]
Pierz, Klaus [2 ]
Satrapinski, Alexandre [3 ]
机构
[1] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland
[2] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
[3] Ctr Metrol & Accreditat, Espoo 02150, Finland
关键词
Contact resistance; epitaxial graphene; graphene fabrication; precision measurement; quantum Hall effect (QHE);
D O I
10.1109/TIM.2014.2385131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum Hall effect (QHE) devices based on epitaxial graphene films grown on SiC were fabricated and studied for development of the QHE resistance standard. The graphene-metal contacting area in the Hall devices has been improved and fabricated using a double metallization process. The tested devices had an initial carrier concentration of (0.6-10) . 10(11) cm(-2) and showed half-integer QHE at a relatively low (3 T) magnetic field. The application of the photochemical gating method and annealing of the sample provides a convenient way for tuning the carrier density to the optimum value. Precision measurements of the quantum Hall resistance in graphene and GaAs devices at moderate magnetic field strengths (<= 7 T) showed a relative agreement within 6 . 10(-9).
引用
收藏
页码:1533 / 1538
页数:6
相关论文
共 50 条
  • [21] Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films
    Guo, Yang
    Mu, Jiuke
    Hou, Chengyi
    Wang, Hongzhi
    Zhang, Qinghong
    Li, Yaogang
    CARBON, 2016, 107 : 146 - 153
  • [22] Fabrication of Large-Area Graphene Using Liquid Gallium and Its Electrical Properties
    Fujita, Jun-ichi
    Miyazawa, Yosuke
    Ueki, Ryuichi
    Sasaki, Mio
    Saito, Takeshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (06) : 06GC011 - 06GC015
  • [23] Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes
    Aleman, Benjamin
    Regan, William
    Aloni, Shaul
    Altoe, Virginia
    Alem, Nasim
    Girit, Caglar
    Geng, Baisong
    Maserati, Lorenzo
    Crommie, Michael
    Wang, Feng
    Zettl, A.
    ACS NANO, 2010, 4 (08) : 4762 - 4768
  • [24] Large-area graphene for sensor applications
    Snow, Eric S.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS II, 2010, 7679
  • [25] Photodetectors based on controllable growth of large-area graphene films
    Zheng, Jiajin
    Xu, Xiang
    Zhang, Yong
    Xie, Qiyun
    Wu, Xiaoming
    Yu, Kehan
    Wei, Wei
    THIN SOLID FILMS, 2020, 709
  • [26] Large-area Graphene FET based Broadband Terahertz Modulator
    Wen, Qi-Ye
    Liu, Yang
    Liu, Jing-Bo
    Wen, Tian-Long
    Yang, Qing-Hui
    Chen, Zhi
    Jing, Yu-Lan
    Zhang, Huai-Wu
    2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2016,
  • [27] Liquid metal intercalation of epitaxial graphene: Large-area gallenene layer fabrication through gallium self-propagation at ambient conditions
    Wundrack, S.
    Momeni, D.
    Dempwolf, W.
    Schmidt, N.
    Pierz, K.
    Michaliszyn, L.
    Spende, H.
    Schmidt, A.
    Schumacher, H. W.
    Stosch, R.
    Bakin, A.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (02)
  • [28] 3C-SiC epitaxial growth on large-area Si substrates: Fabrication and applications
    Nagasawa, H
    Yagi, K
    SILICON MATERIALS SCIENCE AND TECHNOLOGY, VOLS 1 AND 2, 1998, : 1418 - 1432
  • [29] High-speed continuous micro pattern fabrication on fibers for large-area devices
    Takagi, Hideki
    Ohtomo, Akihiro
    Mekaru, Harutaka
    Kokubo, Mitsunori
    Goto, Hiroshi
    IEEJ Transactions on Sensors and Micromachines, 2013, 133 (04) : 112 - 117
  • [30] Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization
    Forti, S.
    Emtsev, K. V.
    Coletti, C.
    Zakharov, A. A.
    Riedl, C.
    Starke, U.
    PHYSICAL REVIEW B, 2011, 84 (12)