Multilingual information retrieval using machine translation, relevance feedback and decompounding

被引:31
|
作者
Chen, A [1 ]
Gey, FC
机构
[1] Univ Calif Berkeley, Sch Informat Management & Syst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, UC Data Arch & Tech Assistance UC DATA, Berkeley, CA 94720 USA
来源
INFORMATION RETRIEVAL | 2004年 / 7卷 / 1-2期
关键词
multilingual information retrieval; cross-language information retrieval; relevance feedback; decompounding; results merging;
D O I
10.1023/B:INRT.0000009444.89549.90
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multilingual retrieval ( querying of multiple document collections each in a different language) can be achieved by combining several individual techniques which enhance retrieval: machine translation to cross the language barrier, relevance feedback to add words to the initial query, decompounding for languages with complex term structure, and data fusion to combine monolingual retrieval results from different languages. Using the CLEF 2001 and CLEF 2002 topics and document collections, this paper evaluates these techniques within the context of a monolingual document ranking formula based upon logistic regression. Each individual technique yields improved performance over runs which do not utilize that technique. Moreover the techniques are complementary, in that combining the best techniques outperforms individual technique performance. An approximate but fast document translation using bilingual wordlists created from machine translation systems is presented and evaluated. The fast document translation is as effective as query translation in multilingual retrieval. Furthermore, when fast document translation is combined with query translation in multilingual retrieval, the performance is significantly better than that of query translation or fast document translation.
引用
收藏
页码:149 / 182
页数:34
相关论文
共 50 条
  • [21] Patternquest: Learning patterns of interest using relevance feedback in multimedia information retrieval
    Wu, YM
    Zhang, AD
    2004 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXP (ICME), VOLS 1-3, 2004, : 261 - 264
  • [22] Pseudo-Relevance Feedback for Information Retrieval in Medicine Using Genetic Algorithms
    Lanh Nguyen
    Tru Cao
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT II, 2018, 10752 : 395 - 404
  • [23] A multilingual approach to multilingual information retrieval
    Nie, JY
    Jin, F
    ADVANCES IN CROSS-LANGUAGE INFORMATION RETRIEVAL, 2003, 2785 : 101 - 110
  • [24] An Emperical Study: Relevance Feedback in Information Retrieval Systems
    Walia, Angadpreet
    Gahlawat, Tanisha
    Kalra, Pand
    Mehrotra, Deepti
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 982 - 985
  • [25] Relevance Feedback on Keyword Space for Interactive Information Retrieval
    Wang Xiao-Gang
    Li Yue
    2009 IITA INTERNATIONAL CONFERENCE ON SERVICES SCIENCE, MANAGEMENT AND ENGINEERING, PROCEEDINGS, 2009, : 587 - 590
  • [26] Support vector machines: relevance feedback and information retrieval
    Drucker, H
    Shahrary, B
    Gibbon, DC
    INFORMATION PROCESSING & MANAGEMENT, 2002, 38 (03) : 305 - 323
  • [27] Adaptive parameter tuning for relevance feedback of information retrieval
    Zhang, J
    Zhao, YN
    Yang, ZH
    Wang, JX
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 2132 - 2135
  • [28] Relevance feedback in semantic-based information retrieval
    Cai, Jun
    Nanjing Youdian Xueyuan Xuebao/Journal of Nanjing Institute of Posts and Telecommunications, 2003, 23 (02):
  • [29] Language Model Adaptation for Relevance Feedback in Information Retrieval
    Chang, Ying-Lang
    Chien, Jen-Tzung
    2008 6TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING, PROCEEDINGS, 2008, : 289 - 292
  • [30] Relevance feedback and cross-language information retrieval
    Orengo, Viviane Moreira
    Huyck, Christian
    INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (05) : 1203 - 1217