Language Model Adaptation for Relevance Feedback in Information Retrieval

被引:0
|
作者
Chang, Ying-Lang [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
关键词
language model; Bayesian learning; relevance feedback; document retrieval;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Language model is a popular method of exploiting linguistic regularities for document retrieval. To improve retrieval performance, the scheme of relevance feedback is adopted by adjusting the query language model using the information feedback from the retrieved documents. This study presents a new Bayesian learning approach to instantaneous and unszpervised adaptation of language model for adaptive information retrieval. We aim to compensate the domain mismatch between query and documents by adapting the query language model to meet the domains of collected documents. The maximum a posteriori adaptation is executed solely by using the input query without additional collection of adaptation data. The retrieved top N documents are utilized as relevant documents and referred as feedback to estimate mixture of language models for Bayesian document retrieval. The experiments on using TREC datasets show that the proposed method significantly outperforms the other relevance feedback methods.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [1] Relevance feedback and cross-language information retrieval
    Orengo, Viviane Moreira
    Huyck, Christian
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (05) : 1203 - 1217
  • [2] Fully Utilize Feedbacks: Language Model Based Relevance Feedback in Information Retrieval
    Lv, Sheng-Long
    Deng, Zhi-Hong
    Yu, Hang
    Gao, Ning
    Jiang, Jia-Jian
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PT I, 2011, 7120 : 395 - 405
  • [3] The Study of Methods for Language Model Based Positive and Negative Relevance Feedback in Information Retrieval
    Zhang, Wen-jing
    Wang, Jun-yi
    [J]. 2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 39 - 43
  • [4] LDA BASED PSEUDO RELEVANCE FEEDBACK FOR CROSS LANGUAGE INFORMATION RETRIEVAL
    Wang, Xuwen
    Zhang, Qiang
    Wang, Xiaojie
    Sun, Yueping
    [J]. 2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS) Vols 1-3, 2012, : 1511 - 1516
  • [5] A simulation model of document information retrieval system with relevance feedback
    Pathak, P
    [J]. ASSOCIATION FOR INFORMATION SYSTEMS PROCEEDINGS OF THE AMERICAS CONFERENCE ON INFORMATION SYSTEMS, 1998, : 194 - 196
  • [6] STATISTICAL-MODEL FOR RELEVANCE FEEDBACK IN INFORMATION-RETRIEVAL
    YU, CT
    LUK, WS
    CHEUNG, TY
    [J]. JOURNAL OF THE ACM, 1976, 23 (02) : 273 - 286
  • [7] Relevance feedback for cross language image retrieval
    Clough, P
    Sanderson, M
    [J]. ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2004, 2997 : 238 - 252
  • [8] Contextual relevance feedback in web information retrieval
    Limbu, Dilip Kumar
    Connor, Andy
    Pears, Russel
    MacDonell, Stephen
    [J]. INFORMATION INTERACTION IN CONTEXT, PROCEEDINGS, 2006, : 235 - 244
  • [9] User Relevance Feedback in Semantic Information Retrieval
    Picariello, Antonio
    Rinaldi, Antonio M.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2007, 3 (02) : 36 - 50
  • [10] Synchronous collaborative information retrieval with relevance feedback
    Foley, Colum
    Smeaton, Alan F.
    Lee, Hyowon
    [J]. 2006 INTERNATIONAL CONFERENCE ON COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, 2006, : 158 - +