Language Model Adaptation for Relevance Feedback in Information Retrieval

被引:0
|
作者
Chang, Ying-Lang [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
关键词
language model; Bayesian learning; relevance feedback; document retrieval;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Language model is a popular method of exploiting linguistic regularities for document retrieval. To improve retrieval performance, the scheme of relevance feedback is adopted by adjusting the query language model using the information feedback from the retrieved documents. This study presents a new Bayesian learning approach to instantaneous and unszpervised adaptation of language model for adaptive information retrieval. We aim to compensate the domain mismatch between query and documents by adapting the query language model to meet the domains of collected documents. The maximum a posteriori adaptation is executed solely by using the input query without additional collection of adaptation data. The retrieved top N documents are utilized as relevant documents and referred as feedback to estimate mixture of language models for Bayesian document retrieval. The experiments on using TREC datasets show that the proposed method significantly outperforms the other relevance feedback methods.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [21] Unsupervised Large Language Model Alignment for Information Retrieval via Contrastive Feedback
    Dong, Qian
    Liu, Yiding
    Ai, Qingyao
    Wu, Zhijing
    Li, Haitao
    Liu, Yiqun
    Wang, Shuaiqiang
    Yin, Dawei
    Ma, Shaoping
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 48 - 58
  • [22] Content-based image retrieval by feature adaptation and relevance feedback
    Grigorova, Anelia
    De Natale, Francesco G. B.
    Dagli, Charlie
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (06) : 1183 - 1192
  • [23] Verbosity normalized pseudo-relevance feedback in information retrieval
    Na, Seung-Hoon
    Kim, Kangil
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2018, 54 (02) : 219 - 239
  • [24] Combining the evidence of different relevance feedback methods for information retrieval
    Lee, JH
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1998, 34 (06) : 681 - 691
  • [25] A user interface of relevance feedback for interactive information retrieval systems
    Vitsentiy, Vitaliy
    [J]. IDAACS 2007: PROCEEDINGS OF THE 4TH IEEE WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2007, : 449 - 453
  • [26] Enhancing query translation with relevance feedback in translingual information retrieval
    He, Daqing
    Wu, Dan
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2011, 47 (01) : 1 - 17
  • [27] A weight-based approach to information retrieval and relevance feedback
    Liao, Yi-Chun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (1-2) : 254 - 261
  • [28] Interactive pattern analysis for relevance feedback in multimedia information retrieval
    Wu, YM
    Zhang, AD
    [J]. MULTIMEDIA SYSTEMS, 2004, 10 (01) : 41 - 55
  • [29] Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
    Jacucci, Giulio
    Barral, Oswald
    Daee, Pedram
    Wenzel, Markus
    Serim, Baris
    Ruotsalo, Tuukka
    Pluchino, Patrik
    Freeman, Jonathan
    Gamberini, Luciano
    Kaski, Samuel
    Blankertz, Benjamin
    [J]. JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2019, 70 (09) : 917 - 930
  • [30] Semantically enhanced pseudo relevance feedback for Arabic information retrieval
    Atwan, Jaffar
    Mohd, Masnizah
    Rashaideh, Hasan
    Kanaan, Ghassan
    [J]. JOURNAL OF INFORMATION SCIENCE, 2016, 42 (02) : 246 - 260