Projective toric codes

被引:3
|
作者
Nardi, Jade [1 ,2 ]
机构
[1] Ecole Polytech, INRIA, CNRS UMR 7161, F-91128 Palaiseau, France
[2] Ecole Polytech, LIX, CNRS UMR 7161, F-91128 Palaiseau, France
关键词
Error-correcting codes; toric variety; polytope; algebraic geometric codes; Grobner bases; ALGEBRAIC FUNCTION-FIELDS; SURFACE CODES; PARAMETERS; SPACES;
D O I
10.1142/S1793042122500142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any integral convex polytope P in R-N provides an N-dimensional toric variety X-P and an ample divisor D-P on this variety. This paper gives an explicit construction of the algebraic geometric error-correcting code on XP, obtained by evaluating global section of the line bundle corresponding to D-P on every rational point of X-P. This work presents an extension of toric codes analogous to the one of Reed-Muller codes into projective ones, by evaluating on the whole variety instead of considering only points with nonzero coordinates. The dimension of the code is given in terms of the number of integral points in the polytope P and an algorithmic technique to get a lower bound on the minimum distance is described.
引用
收藏
页码:179 / 204
页数:26
相关论文
共 50 条
  • [31] Quasi-projective reduction of toric varieties
    A. A'Campo–Neuen
    J. Hausen
    [J]. Mathematische Zeitschrift, 2000, 233 : 697 - 708
  • [32] On generators of ideals defining projective toric varieties
    Ogata, S
    Nakagawa, K
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 108 (01) : 33 - 42
  • [33] SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE TORIC VARIETIES
    Kim, Jin Hong
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) : 265 - 276
  • [34] Several diophantian aspects of projective toric varieties
    Philippon, Patrice
    Sombra, Martin
    [J]. DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 295 - +
  • [35] Quasi-projective reduction of toric varieties
    A'Campo-Neuen, A
    Hausen, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) : 697 - 708
  • [36] Geometric invariant theory and projective toric varieties
    Proudfoot, N
    [J]. SNOWBIRD LECTURES IN ALGEBRAIC GEOMETRY, 2005, 388 : 161 - 167
  • [37] On generators of ideals defining projective toric varieties
    Shoetsu Ogata
    Katsuyoshi Nakagawa
    [J]. manuscripta mathematica, 2002, 108 : 33 - 42
  • [38] RATIONAL INTERSECTION COHOMOLOGY OF PROJECTIVE TORIC VARIETIES
    FIESELER, KH
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 413 : 88 - 98
  • [39] Segre classes on smooth projective toric varieties
    Torgunn Karoline Moe
    Nikolay Qviller
    [J]. Mathematische Zeitschrift, 2013, 275 : 529 - 548
  • [40] Self-dual projective toric varieties
    Bourel, Mathias
    Dickenstein, Alicia
    Rittatore, Alvaro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 514 - 540