Quasi-projective reduction of toric varieties

被引:2
|
作者
A'Campo-Neuen, A [1 ]
Hausen, J [1 ]
机构
[1] Univ Konstanz, Fak Math & Informat, Fach D197, D-78457 Constance, Germany
关键词
D O I
10.1007/s002090050494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quasi-projective reduction of a complex algebraic variety X to be a regular map from X to a quasi-projective variety that is universal with respect to regular maps from X to quasi-projective varieties. A toric quasi-projective reduction is the analogous notion in the category of toric varieties, For a given toric variety X we first construct a toric quasi-projective reduction. Then we show that X has a quasi-projective reduction if and only if its toric quasi-projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi-projective toric variety admits a categorical quotient in the category of quasi-projective varieties.
引用
收藏
页码:697 / 708
页数:12
相关论文
共 50 条
  • [1] Quasi-projective reduction of toric varieties
    A. A'Campo–Neuen
    J. Hausen
    [J]. Mathematische Zeitschrift, 2000, 233 : 697 - 708
  • [2] A tower of coverings of quasi-projective varieties
    Yeung, Sai-Kee
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (03) : 1196 - 1208
  • [3] LEFSCHETZ THEOREMS ON QUASI-PROJECTIVE VARIETIES
    HAMM, HA
    TRANG, LD
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1985, 113 (02): : 123 - 142
  • [4] Holonomy stability in quasi-projective varieties
    Caro, Daniel
    [J]. COMPOSITIO MATHEMATICA, 2011, 147 (06) : 1772 - 1792
  • [5] Algebraic varieties with quasi-projective universal cover
    Claudon, Benoit
    Hoering, Andreas
    Kollar, Janos
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 679 : 207 - 221
  • [6] On the Albanese map for smooth quasi-projective varieties
    Spiess, M
    Szamuely, T
    [J]. MATHEMATISCHE ANNALEN, 2003, 325 (01) : 1 - 17
  • [7] Algebraic cocycles on normal, quasi-projective varieties
    Friedlander, EM
    [J]. COMPOSITIO MATHEMATICA, 1998, 110 (02) : 127 - 162
  • [8] On the Albanese map for smooth quasi-projective varieties
    Michael Spieß
    Tamás Szamuely
    [J]. Mathematische Annalen, 2003, 325 : 1 - 17
  • [9] Grothendieck Ring of Pairs of Quasi-Projective Varieties
    Gusein-Zade, Sabir
    Luengo, Ignacio
    Melle-Hernandez, Alejandro
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2024, 58 (01) : 33 - 38
  • [10] Characteristic varieties of quasi-projective manifolds and orbifolds
    Bartolo, Enrique Artal
    Cogolludo-Agustin, Jose Ignacio
    Matei, Daniel
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (01) : 273 - 309