Self-dual projective toric varieties

被引:6
|
作者
Bourel, Mathias [1 ]
Dickenstein, Alicia [2 ,3 ]
Rittatore, Alvaro [4 ]
机构
[1] Univ Republica, Fac Ingn, Inst Matemat & Estadist, Montevideo 11300, Uruguay
[2] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
[4] Univ Republica, Fac Ciencias, Montevideo 11400, Uruguay
关键词
HYPERGEOMETRIC-FUNCTIONS; DISCRIMINANTS; MANIFOLDS;
D O I
10.1112/jlms/jdr022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X subset of P (V) is self-dual, in terms of the configuration of weights of V
引用
收藏
页码:514 / 540
页数:27
相关论文
共 50 条
  • [1] Self-dual projective algebraic varieties associated with symmetric spaces
    Popov, VL
    Tevelev, EA
    [J]. ALGEBRAIC TRANSFORMATION GROUPS AND ALGEBRAIC VARIETIES, 2004, 132 : 131 - 167
  • [2] Irredundant self-dual bases for self-dual lattice varieties
    Kelly, D
    Padmanabhan, R
    [J]. ALGEBRA UNIVERSALIS, 2005, 52 (04) : 501 - 517
  • [3] Irredundant self-dual bases for self-dual lattice varieties
    David Kelly
    R. Padmanabhan
    [J]. algebra universalis, 2005, 52 : 501 - 517
  • [4] DUAL TRANSFORM AND PROJECTIVE SELF-DUAL CODES
    Bouyukliev, Iliya
    Bouyuklieva, Stefka
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (02) : 328 - 341
  • [5] SELF-DUAL POSTULATES FOR PROJECTIVE GEOMETRY
    ESSER, MHM
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 52 - 52
  • [6] Toric Self-Dual Einstein Metrics as Quotients
    Charles P. Boyer
    David M.J. Calderbank
    Krzysztof Galicki
    Paolo Piccinni
    [J]. Communications in Mathematical Physics, 2005, 253 : 337 - 370
  • [7] THE CONSTRUCTION OF SELF-DUAL PROJECTIVE POLYHEDRA
    ARCHDEACON, D
    NEGAMI, S
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (01) : 122 - 131
  • [8] Toric self-dual Einstein metrics as quotients
    Boyer, CP
    Calderbank, DMJ
    Galicki, K
    Piccinni, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (02) : 337 - 370
  • [9] CAYLEY FORMS AND SELF-DUAL VARIETIES
    Catanese, F.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (01) : 89 - 109
  • [10] COMPLETELY SELF-DUAL VARIETIES AND QUASI-VARIETIES
    VERNIKOV, BM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (09): : 25 - 29