Irredundant self-dual bases for self-dual lattice varieties

被引:0
|
作者
Kelly, D [1 ]
Padmanabhan, R [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
basis; independent; irredundant; lattice; proximate lattice; self-dual;
D O I
10.1007/s00012-004-1898-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any finitely based self-dual variety of lattices, we determine the sizes of all equational bases that are both irredundant and self-dual. We make the same determination for {0, 1}-lattice varieties.
引用
收藏
页码:501 / 517
页数:17
相关论文
共 50 条
  • [1] Irredundant self-dual bases for self-dual lattice varieties
    David Kelly
    R. Padmanabhan
    [J]. algebra universalis, 2005, 52 : 501 - 517
  • [2] Self-dual bases for varieties of orthomodular lattices
    Kelly, D
    Padmanabhan, R
    [J]. ALGEBRA UNIVERSALIS, 2003, 50 (02) : 141 - 147
  • [3] Self-dual bases for varieties of orthomodular lattices
    David Kelly
    R. Padmanabhan
    [J]. algebra universalis, 2003, 50 : 141 - 147
  • [4] On self-dual normal bases
    Bagio, D
    Dias, I
    Paques, A
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (01): : 1 - 11
  • [5] SELF-DUAL NORMAL BASES
    BAYERFLUCKIGER, E
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1989, 92 (04): : 379 - 383
  • [6] Self-dual lattice identities
    Kelly, D
    Padmanabhan, R
    [J]. ALGEBRA UNIVERSALIS, 2002, 48 (04) : 413 - 426
  • [7] Self-dual and quasi self-dual algebras
    Gerstenhaber, M.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 193 - 211
  • [8] Self-dual and quasi self-dual algebras
    M. Gerstenhaber
    [J]. Israel Journal of Mathematics, 2014, 200 : 193 - 211
  • [9] Self-dual lattice identities
    David Kelly
    R. Padmanabhan
    [J]. algebra universalis, 2002, 48 : 413 - 426
  • [10] Self-dual projective toric varieties
    Bourel, Mathias
    Dickenstein, Alicia
    Rittatore, Alvaro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 514 - 540