Robust a posteriori error estimation for mixed finite element approximation of linear poroelasticity

被引:3
|
作者
Khan, Arbaz [1 ]
Silvester, David J. [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Biot's consolidation model; mixed approximation; locking-free; a posteriori analysis; error estimation; adaptivity; CONSOLIDATION; ACCURACY; BEHAVIOR;
D O I
10.1093/imanum/draa058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a posteriori error estimators for locking-free mixed finite element approximation of Biot's consolidation model. Three estimators are described. The simplest of these is a conventional residual-based estimator. We establish bounds relating the estimated and true errors, and show that these are independent of the physical parameters. The other two estimators require the solution of local problems. These local problem estimators are also shown to be reliable, efficient and robust. Numerical results are presented that validate the theoretical estimates, and illustrate the effectiveness of the estimators in guiding adaptive solution algorithms. The IFISS and T-IFISS software packages used for the computational experiments are available online.
引用
收藏
页码:2000 / 2025
页数:26
相关论文
共 50 条
  • [21] Remarks on a posteriori error estimation for finite element solutions
    Kikuchi, Fumio
    Saito, Hironobu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) : 329 - 336
  • [22] A posteriori error estimation for standard finite element analysis
    Diez, P
    Egozcue, JJ
    Huerta, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 141 - 157
  • [23] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [24] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [25] A posteriori error estimates for the finite element approximation of eigenvalue problems
    Durán, RG
    Padra, C
    Rodríguez, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08): : 1219 - 1229
  • [26] Residual-Based A Posteriori Error Estimator for the Mixed Finite Element Approximation of the Biharmonic Equation
    Gudi, Thirupathi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 315 - 328
  • [27] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 37 - 53
  • [28] Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals
    Grajewski, M
    Hron, J
    Turek, S
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) : 504 - 518
  • [29] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [30] A POSTERIORI ERROR ESTIMATION FOR THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHODS
    RENCIS, JJ
    UREKEW, TJ
    JONG, KY
    KIRK, R
    FEDERICO, P
    COMPUTERS & STRUCTURES, 1990, 37 (01) : 103 - 117