Newton polytopes of invariants of additive group actions

被引:12
|
作者
Derksen, H
Hadas, O
Makar-Limanov, L
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
13;
D O I
10.1016/S0022-4049(99)00151-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the vertices of Newton polytopes of invariants of an algebraic group action of the additive group of a field k of arbitrary characteristic on affine n-space over k lie on the coordinate hyperplanes. Furthermore, let E be the set of all edges of these Newton polytopes whose vertices lie in different coordinate hyperplanes. It is shown that one of these polytopes has edges with all directions represented in E. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 13.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [41] Newton polytopes in algebraic combinatorics
    Cara Monical
    Neriman Tokcan
    Alexander Yong
    Selecta Mathematica, 2019, 25
  • [42] Newton Polytopes and Witness Sets
    Hauenstein J.D.
    Sottile F.
    Mathematics in Computer Science, 2014, 8 (2) : 235 - 251
  • [43] Newton polytopes and tropical geometry
    Kazarnovskii, B. Ya.
    Khovanskii, A. G.
    Esterov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (01) : 91 - 175
  • [44] On conjugacy of additive actions in the affine Cremona group
    Arzhantsev, Ivan
    QUAESTIONES MATHEMATICAE, 2024, 47 (09) : 1767 - 1774
  • [45] INVARIANTS AND EXAMPLES OF GROUP-ACTIONS ON TREES AND LENGTH FUNCTIONS
    WILKENS, DL
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1991, 34 : 313 - 320
  • [46] Estimation under group actions: Recovering orbits from invariants
    Bandeira, Afonso S.
    Blum-Smith, Ben
    Kileel, Joe
    Niles-Weed, Jonathan
    Perry, Amelia
    Wein, Alexander S.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 66 : 236 - 319
  • [47] Invariants of Finite and Discrete Group Actions via Moving Frames
    Peter J. Olver
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [48] Quantum invariants and finite group actions on three-manifolds
    Chbili, N
    TOPOLOGY AND ITS APPLICATIONS, 2004, 136 (1-3) : 219 - 231
  • [49] Invariants of algebraic group actions from differential point of view
    Bibikov, Pavel
    Lychagin, Valentin
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 136 : 89 - 96
  • [50] Invariants of Finite and Discrete Group Actions via Moving Frames
    Olver, Peter J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (02)