Newton polytopes and tropical geometry

被引:4
|
作者
Kazarnovskii, B. Ya. [1 ]
Khovanskii, A. G. [2 ,3 ]
Esterov, A. I. [4 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[2] Univ Moscow, Moscow, Russia
[3] Univ Toronto, Toronto, ON, Canada
[4] Natl Res Univ Higher Sch Econ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
family of algebraic varieties; Newton polytope; ring of conditions; toric variety; tropical geometry; mixed volume; exponential sum; ALGEBRAIC-CURVES; VARIETIES; POLYHEDRA;
D O I
10.1070/RM9937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The practice of bringing together the concepts of 'Newton polytopes', 'toric varieties', 'tropical geometry', and 'Grobner bases' has led to the formation of stable and mutually beneficial connections between algebraic geometry and convex geometry. This survey is devoted to the current state of the area of mathematics that describes the interaction and applications of these concepts. Bibliography: 68 titles.
引用
收藏
页码:91 / 175
页数:85
相关论文
共 50 条
  • [1] Numerical Software to Compute Newton polytopes and Tropical Membership
    Brysiewicz, Taylor
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (03) : 577 - 589
  • [2] Numerical Software to Compute Newton polytopes and Tropical Membership
    Taylor Brysiewicz
    Mathematics in Computer Science, 2020, 14 : 577 - 589
  • [3] Tropical analytic geometry, Newton polygons, and tropical intersections
    Rabinoff, Joseph
    ADVANCES IN MATHEMATICS, 2012, 229 (06) : 3192 - 3255
  • [4] Feynman polytopes and the tropical geometry of UV and IR divergences
    Arkani-Hamed, Nima
    Hillman, Aaron
    Mizera, Sebastian
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [5] SHADOWS OF NEWTON POLYTOPES
    Hrubes, Pavel
    Yehudayoff, Amir
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (01) : 311 - 343
  • [6] On Newton polytopes of Lagrangian augmentations
    Capovilla-Searle, Orsola
    Casals, Roger
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) : 1263 - 1290
  • [7] COERCIVE POLYNOMIALS AND THEIR NEWTON POLYTOPES
    Bajbar, Tomas
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1542 - 1570
  • [8] NEWTON POLYTOPES FOR HOROSPHERICAL SPACES
    Kaveh, Kiumars
    Khovanskii, A. G.
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (02) : 265 - 283
  • [9] Newton polytopes in algebraic combinatorics
    Monical, Cara
    Tokcan, Neriman
    Yong, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (05):
  • [10] Newton polytopes in algebraic combinatorics
    Cara Monical
    Neriman Tokcan
    Alexander Yong
    Selecta Mathematica, 2019, 25