Newton polytopes in algebraic combinatorics

被引:18
|
作者
Monical, Cara [1 ,2 ]
Tokcan, Neriman [1 ,3 ]
Yong, Alexander [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2019年 / 25卷 / 05期
关键词
POLYNOMIALS; TABLEAUX; FORMULA;
D O I
10.1007/s00029-019-0513-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A polynomial has saturated Newton polytope (SNP) if every lattice point of the convex hull of its exponent vectors corresponds to a monomial. We compile instances of SNP in algebraic combinatorics (some with proofs, others conjecturally): skew Schur polynomials; symmetric polynomials associated to reduced words, Redfield-Polya theory, Witt vectors, and totally nonnegative matrices; resultants; discriminants (up to quartics); Macdonald polynomials; key polynomials; Demazure atoms; Schubert polynomials; and Grothendieck polynomials, among others. Our principal construction is the Schubitope. For any subset of , we describe it by linear inequalities. This generalized permutahedron conjecturally has positive Ehrhart polynomial. We conjecture it describes the Newton polytope of Schubert and key polynomials. We also define dominance order on permutations and study its poset-theoretic properties.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Newton polytopes in algebraic combinatorics
    Cara Monical
    Neriman Tokcan
    Alexander Yong
    [J]. Selecta Mathematica, 2019, 25
  • [2] NEWTON POLYTOPES AND ALGEBRAIC HYPERGEOMETRIC SERIES
    Adolphson, Alan
    Sperber, Steven
    Katz, Nicholas M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8365 - 8389
  • [3] On the combinatorics of string polytopes
    Cho, Yunhyung
    Kim, Yoosik
    Lee, Eunjeong
    Park, Kyeong-Dong
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 184
  • [4] Combinatorics of polytopes - Preface
    Fukuda, K
    Ziegler, GM
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 1 - 1
  • [5] Polyhedra and polytopes: Algebra and combinatorics
    McMullen, Peter
    [J]. Algebraic and Geometric Combinatorics, 2006, 423 : 235 - 267
  • [6] The combinatorics of interval-vector polytopes
    Beck, Matthias
    De Silva, Jessica
    Dorfsman-Hopkins, Gabriel
    Pruitt, Joseph
    Ruiz, Amanda
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [7] Combinatorics and geometry of transportation polytopes: An update
    De Loera, Jesus A.
    Kim, Edward D.
    [J]. DISCRETE GEOMETRY AND ALGEBRAIC COMBINATORICS, 2014, 625 : 37 - 76
  • [8] GEOMETRY, COMPLEXITY, AND COMBINATORICS OF PERMUTATION POLYTOPES
    ONN, S
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (01) : 31 - 49
  • [9] SHADOWS OF NEWTON POLYTOPES
    Hrubes, Pavel
    Yehudayoff, Amir
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (01) : 311 - 343
  • [10] Applications of Algebraic Combinatorics to Algebraic Geometry
    Kazhdan, David
    Ziegler, Tamar
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1412 - 1428