Numerical Software to Compute Newton polytopes and Tropical Membership

被引:4
|
作者
Brysiewicz, Taylor [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
关键词
Newton polytope; Hypersurface; Homotopy continuation; Tropical; Algorithm;
D O I
10.1007/s11786-020-00454-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface. Additionally, we propose an algorithm which functions as a tropical membership test for higher codimension varieties based on ideas from Hept and Theobald. This tropical membership algorithm relies on a numerical oracle and we analyze some of the convergence rates involved. Our implementation is written as a Macaulay2 package called NumericalNP.m2. To showcase this package, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the Luroth invariant.
引用
收藏
页码:577 / 589
页数:13
相关论文
共 50 条
  • [1] Numerical Software to Compute Newton polytopes and Tropical Membership
    Taylor Brysiewicz
    Mathematics in Computer Science, 2020, 14 : 577 - 589
  • [2] Numerical Software to Compute Newton Polytopes
    Brysiewicz, Taylor
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 80 - 88
  • [3] Newton polytopes and tropical geometry
    Kazarnovskii, B. Ya.
    Khovanskii, A. G.
    Esterov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (01) : 91 - 175
  • [4] SHADOWS OF NEWTON POLYTOPES
    Hrubes, Pavel
    Yehudayoff, Amir
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (01) : 311 - 343
  • [5] (Deterministic) algorithms that compute the volume of polytopes
    Kaiser, M. J.
    International Journal of Mathematical Education in Science and Technology, 28 (01):
  • [6] On Newton polytopes of Lagrangian augmentations
    Capovilla-Searle, Orsola
    Casals, Roger
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) : 1263 - 1290
  • [7] COERCIVE POLYNOMIALS AND THEIR NEWTON POLYTOPES
    Bajbar, Tomas
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1542 - 1570
  • [8] NEWTON POLYTOPES FOR HOROSPHERICAL SPACES
    Kaveh, Kiumars
    Khovanskii, A. G.
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (02) : 265 - 283
  • [9] Newton polytopes in algebraic combinatorics
    Monical, Cara
    Tokcan, Neriman
    Yong, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (05):
  • [10] Newton polytopes in algebraic combinatorics
    Cara Monical
    Neriman Tokcan
    Alexander Yong
    Selecta Mathematica, 2019, 25