Newton polytopes of invariants of additive group actions

被引:12
|
作者
Derksen, H
Hadas, O
Makar-Limanov, L
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
13;
D O I
10.1016/S0022-4049(99)00151-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the vertices of Newton polytopes of invariants of an algebraic group action of the additive group of a field k of arbitrary characteristic on affine n-space over k lie on the coordinate hyperplanes. Furthermore, let E be the set of all edges of these Newton polytopes whose vertices lie in different coordinate hyperplanes. It is shown that one of these polytopes has edges with all directions represented in E. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 13.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [31] Rees algebras of additive group actions
    Dubouloz, Adrien
    Heden, Isac
    Kishimoto, Takashi
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 593 - 626
  • [32] INVARIANTS OF LINEARLY REDUCTIVE FORMAL GROUP-ACTIONS
    TYC, A
    JOURNAL OF ALGEBRA, 1986, 101 (01) : 166 - 187
  • [33] END INVARIANTS OF POLYCYCLIC BY FINITE-GROUP ACTIONS
    HOUGHTON, CH
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 25 (02) : 213 - 225
  • [34] CONVEX POLYTOPES AS MATRIX INVARIANTS
    SIERKSMA, G
    DEVOS, K
    COMPOSITIO MATHEMATICA, 1984, 52 (02) : 203 - 210
  • [35] On Newton polytopes of Lagrangian augmentations
    Capovilla-Searle, Orsola
    Casals, Roger
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) : 1263 - 1290
  • [36] On the finite generation of additive group invariants in positive characteristic
    Dufresne, Emilie
    Maurischat, Andreas
    JOURNAL OF ALGEBRA, 2010, 324 (08) : 1952 - 1963
  • [37] Linear and nonlinear group actions, and the Newton Institute Program
    Scott, L
    ALGEBRAIC GROUPS AND THEIR REPRESENTATIONS, 1998, 517 : 1 - 23
  • [38] COERCIVE POLYNOMIALS AND THEIR NEWTON POLYTOPES
    Bajbar, Tomas
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1542 - 1570
  • [39] NEWTON POLYTOPES FOR HOROSPHERICAL SPACES
    Kaveh, Kiumars
    Khovanskii, A. G.
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (02) : 265 - 283
  • [40] Newton polytopes in algebraic combinatorics
    Monical, Cara
    Tokcan, Neriman
    Yong, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (05):