Nonparametric adaptive estimation of conditional probabilities of rare events and extreme quantiles

被引:19
|
作者
Durrieu, Gilles [1 ]
Grama, Ion [1 ]
Quang-Khoai Pham [1 ]
Tricot, Jean-Marie [1 ]
机构
[1] Univ Bretagne Sud, LMBA, UMR CNRS 6205, F-56000 Vannes, France
关键词
Nonparametric estimation; Tail conditional probabilities; Extreme conditional quantile; Adaptive estimation; Environment; CLAM CORBICULA-FLUMINEA; CRASSOSTREA-GIGAS; CLOSURE RESPONSE; CONVERGENCE; PARAMETERS; REGRESSION; THRESHOLD; BEHAVIOR; OYSTER; MODEL;
D O I
10.1007/s10687-015-0219-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F (t) (x)=P(X <= x|T = t) be the conditional distribution of a random variable X given that a covariate T takes the value t is an element of[0. T-max]where we assume that the distributions F-t are in the domain of attraction of the Frechet distribution. We observe independent random variables X-t1 ,...X-tn associated to a sequence of times 0 <= t <= ... < tn <= T-max,T- where X-ti has the distribution function For each , we propose a nonparametric adaptive estimator for extreme tail probabilities and quantiles of F-t . It follows from the Fisher-Tippett-Gnedenko theorem that the tail of the distribution function F-t can be adjusted with a Pareto distribution of parameter oee integral(t,tau) starting from a threshold tau. We estimate the parameter oee integral (t,tau) using a nonparametric kernel estimator of bandwidth h based on the observations larger than tau and we propose a pointwise data driven procedure to choose the threshold tau. A global selection of the bandwidth h based on a cross-validation approach is given. Under some regularity assumptions, we prove that the non adaptive and adaptive estimators of oee integral (t,tau) are consistent and we determine their rate of convergence. Finally, we study this procedure using simulations and we analyze an environmental data set.
引用
收藏
页码:437 / 478
页数:42
相关论文
共 50 条
  • [21] Nonparametric prediction by conditional median and quantiles
    Gannoun, A
    Saracco, J
    Yu, KM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 207 - 223
  • [22] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    [J]. ENVIRONMETRICS, 2018, 29 (02)
  • [23] Nonparametric estimation of a maximum of quantiles
    Enss, Georg C.
    Goetz, Benedict
    Kohler, Michael
    Krzyzak, Adam
    Platz, Roland
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 3176 - 3192
  • [24] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    [J]. ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [25] SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
    Kurisu, Daisuke
    Otsu, Taisuke
    [J]. ECONOMETRIC THEORY, 2023,
  • [26] Nonparametric estimates for conditional quantiles of time series
    Franke, Juergen
    Mwita, Peter
    Wang, Weining
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2015, 99 (01) : 107 - 130
  • [27] Nonparametric estimates for conditional quantiles of time series
    Jürgen Franke
    Peter Mwita
    Weining Wang
    [J]. AStA Advances in Statistical Analysis, 2015, 99 : 107 - 130
  • [28] Nonparametric extrapolation of extreme quantiles: a comparison study
    Banfi, Fabiola
    Cazzaniga, Greta
    De Michele, Carlo
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (06) : 1579 - 1596
  • [29] Nonparametric asymptotic confidence intervals for extreme quantiles
    Gardes, Laurent
    Maistre, Samuel
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (02) : 825 - 841
  • [30] Nonparametric extrapolation of extreme quantiles: a comparison study
    Fabiola Banfi
    Greta Cazzaniga
    Carlo De Michele
    [J]. Stochastic Environmental Research and Risk Assessment, 2022, 36 : 1579 - 1596