Volatility estimation and jump detection for drift-diffusion processes

被引:14
|
作者
Laurent, Sebastien [1 ,2 ]
Shi, Shuping [3 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[2] Aix Marseille Grad Sch Management IAE, EHESS, Marseille, France
[3] Macquarie Univ, Dept Econ, N Ryde, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Diffusion process; Nonzero drift; Finite sample theory; Volatility estimation; Jumps; ORDER-STATISTICS; MICROSTRUCTURE NOISE; SPECULATIVE BUBBLES; STOCK MARKETS; MODELS; RETURNS; PRICES; EXUBERANCE; COMPONENTS; REGRESSION;
D O I
10.1016/j.jeconom.2019.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 290
页数:32
相关论文
共 50 条
  • [21] HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python']Python
    Wiecki, Thomas V.
    Sofer, Imri
    Frank, Michael J.
    FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [22] Robust estimation of intraweek periodicity in volatility and jump detection
    Boudt, Kris
    Croux, Christophe
    Laurent, Sebastien
    JOURNAL OF EMPIRICAL FINANCE, 2011, 18 (02) : 353 - 367
  • [23] KERNEL WEIGHTED VOLATILITY ESTIMATION FOR STOCHASTIC DIFFUSION MODEL WITH JUMP
    Ying, Guobing
    Yang, Shanchao
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (02) : 203 - 235
  • [24] Parameter estimation for the drift of a time inhomogeneous jump diffusion process
    Franke, Brice
    Kott, Thomas
    STATISTICA NEERLANDICA, 2013, 67 (02) : 145 - 168
  • [25] ADAPTIVE NONPARAMETRIC DRIFT ESTIMATION OF AN INTEGRATED JUMP DIFFUSION PROCESS
    Funke, Benedikt
    Schmisser, Emeline
    ESAIM-PROBABILITY AND STATISTICS, 2019, 22 : 236 - 260
  • [26] The approximation problem for drift-diffusion systems
    Jerome, JW
    SIAM REVIEW, 1995, 37 (04) : 552 - 572
  • [27] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [28] Outflow probability for drift-diffusion dynamics
    Hinkel, Julia
    Mahnke, Reinhard
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (06) : 1542 - 1561
  • [29] Challenges in Drift-Diffusion Semiconductor Simulations
    Farrell, Patricio
    Peschka, Dirk
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 615 - 623
  • [30] Iterative solution of the drift-diffusion equations
    Nachaoui, A
    NUMERICAL ALGORITHMS, 1999, 21 (1-4) : 323 - 341