HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python']Python

被引:558
|
作者
Wiecki, Thomas V. [1 ]
Sofer, Imri [1 ]
Frank, Michael J. [1 ]
机构
[1] Brown Univ, Dept Cognit Linguist & Psychol Sci, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Bayesian modeling; drift diffusion model; !text type='Python']Python[!/text; decision-making; software; DECISION-MAKING; PARAMETERS; TIMES;
D O I
10.3389/fninf.2013.00014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
    Bitzer, Sebastian
    Park, Hame
    Blankenburg, Felix
    Kiebel, Stefan J.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [2] pyFUME: a Python']Python Package for Fuzzy Model Estimation
    Fuchs, Caro
    Spolaor, Simone
    Nobile, Marco S.
    Kaymak, Uzay
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [3] Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python']Python
    Irvine, Michael A.
    Hollingsworth, T. Deirdre
    [J]. EPIDEMICS, 2018, 25 : 80 - 88
  • [4] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    [J]. ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [5] A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making
    Fard, Pouyan R.
    Park, Hame
    Warkentin, Andrej
    Kiebel, Stefan J.
    Bitzer, Sebastian
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
  • [6] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [7] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    [J]. LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [8] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [9] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [10] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275