HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python']Python

被引:558
|
作者
Wiecki, Thomas V. [1 ]
Sofer, Imri [1 ]
Frank, Michael J. [1 ]
机构
[1] Brown Univ, Dept Cognit Linguist & Psychol Sci, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Bayesian modeling; drift diffusion model; !text type='Python']Python[!/text; decision-making; software; DECISION-MAKING; PARAMETERS; TIMES;
D O I
10.3389/fninf.2013.00014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
引用
收藏
页数:10
相关论文
共 50 条
  • [41] DRIFT-DIFFUSION MODEL FOR ABSORPTION AND RESORPTION CURRENTS IN POLYMERS
    DELVALLE, CA
    RUIZ, MS
    LOPEZ, GM
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 61 (09) : 4571 - 4578
  • [42] SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL
    琚强昌
    陈丽
    [J]. Acta Mathematica Scientia, 2009, 29 (02) : 285 - 293
  • [43] ANALYSIS OF A DRIFT-DIFFUSION MODEL FOR PEROVSKITE SOLAR CELLS
    Abdel, Dilara
    Glitzky, Annegret
    Liero, Matthias
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 99 - 131
  • [44] Approximate solutions to the quantum drift-diffusion model of semiconductors
    Romano, V.
    Torrisi, M.
    Tracina, R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)
  • [45] AN AUGMENTED DRIFT-DIFFUSION MODEL IN A SEMICONDUCTOR-DEVICE
    FRIEDMAN, A
    LIU, WX
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) : 401 - 412
  • [46] The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations
    Hsiao, L
    Zhang, KJ
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (02) : 315 - 354
  • [47] IGCT Circuit Model Based on Drift-diffusion Model Equations
    Zhou, Yaxing
    Kong, Li
    Wang, Jiarui
    [J]. Gaodianya Jishu/High Voltage Engineering, 2021, 47 (01): : 118 - 128
  • [48] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390
  • [49] SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL
    Ju Qiangchang
    Chen Li
    [J]. ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) : 285 - 293
  • [50] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78