Volatility estimation and jump detection for drift-diffusion processes

被引:14
|
作者
Laurent, Sebastien [1 ,2 ]
Shi, Shuping [3 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[2] Aix Marseille Grad Sch Management IAE, EHESS, Marseille, France
[3] Macquarie Univ, Dept Econ, N Ryde, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Diffusion process; Nonzero drift; Finite sample theory; Volatility estimation; Jumps; ORDER-STATISTICS; MICROSTRUCTURE NOISE; SPECULATIVE BUBBLES; STOCK MARKETS; MODELS; RETURNS; PRICES; EXUBERANCE; COMPONENTS; REGRESSION;
D O I
10.1016/j.jeconom.2019.12.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 290
页数:32
相关论文
共 50 条
  • [11] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [12] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [13] Drift-Diffusion MOSFET Modelling
    Bekaddour, A.
    Bouazza, B.
    Chabanne-Sari, N. E.
    AFRICAN REVIEW OF PHYSICS, 2008, 2 : 3 - 3
  • [14] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [15] The drift-diffusion equation revisited
    Assad, F
    Banoo, K
    Lundstrom, M
    SOLID-STATE ELECTRONICS, 1998, 42 (03) : 283 - 295
  • [16] REMARKS ON DRIFT ESTIMATION FOR DIFFUSION PROCESSES
    Pokern, Yvo
    Stuart, Andrew M.
    Vanden-Eijnden, Eric
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 69 - 95
  • [17] THE INFLUENCE OF DRIFT-DIFFUSION PROCESSES ON IV CHARACTERISTICS OF SI SCHOTTKY DIODES
    SIMEONOV, SS
    KAFEDJIISKA, EI
    GUERASSIMOV, AL
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1993, 136 (02): : 393 - 400
  • [18] Anatomy of the drift-diffusion relationship
    Bringuier, E
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (04): : 959 - 964
  • [19] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [20] The calibration of volatility for option pricing models with jump diffusion processes
    Xu, Zuoliang
    Jia, Xiangyu
    APPLICABLE ANALYSIS, 2019, 98 (04) : 810 - 827