High order Lagrange finite elements

被引:0
|
作者
George, Paul Louis [1 ]
Borouchaki, Houman [2 ,3 ]
机构
[1] INRIA, Equipe Projet Gamma 3, F-78153 Le Chesnay, France
[2] Univ Technol Troyes, Equipe ICD Gamma 3, INRIA, F-10010 Troyes, France
[3] Univ Technol Troyes, UTT, F-10010 Troyes, France
关键词
D O I
10.1016/j.crma.2011.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a need for finite elements of degree 2 or more to solve various P.D.E. problems. This Note discusses the theoretical issues about Lagrange simplicial finite elements of arbitrary order and dimension. The purpose is to give the theoretical frame to be applied in actual cases (2 and 3 dimension, degree 2,3,...). We show how finite elements and Bezier patches are related and we deduce a validity condition. (C) 2011 Academie des sciences. Publie par Elsevier Masson SAS. Tous droits reserves.
引用
收藏
页码:905 / 910
页数:6
相关论文
共 50 条
  • [41] High convergence order finite elements with lumped mass matrix
    Jensen, MS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (11) : 1879 - 1888
  • [42] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [43] Hypergeometric summation algorithms for high-order finite elements
    Becirovic, A.
    Paule, P.
    Pillwein, V.
    Riese, A.
    Schneider, C.
    Schoeberl, J.
    COMPUTING, 2006, 78 (03) : 235 - 249
  • [44] Hypergeometric Summation Algorithms for High-order Finite Elements
    A. Bećirović
    P. Paule
    V. Pillwein
    A. Riese
    C. Schneider
    J. Schöberl
    Computing, 2006, 78 : 235 - 249
  • [45] ELEMENTS OF HIGH ORDER ON FINITE FIELDS FROM ELLIPTIC CURVES
    Voloch, Jose Felipe
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (03) : 425 - 429
  • [46] High accuracy nonconforming finite elements for fourth order problems
    Wang Ming
    Zu PengHe
    Zhang Shuo
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 2183 - 2192
  • [47] A hybrid method and unified analysis of generalized finite differences and Lagrange finite elements
    Conley, Rebecca
    Delaney, Tristan J.
    Jiao, Xiangmin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [48] Elements of finite order in βN
    Zelenyuk, Yevhen
    ADVANCES IN MATHEMATICS, 2022, 408
  • [49] The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements
    Dalik, Josef
    APPLICATIONS OF MATHEMATICS, 2012, 57 (05) : 445 - 462
  • [50] Mortar finite elements with dual Lagrange multipliers: Some applications
    Lamichhane, BP
    Wohlmuth, BI
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 319 - 326