High order Lagrange finite elements

被引:0
|
作者
George, Paul Louis [1 ]
Borouchaki, Houman [2 ,3 ]
机构
[1] INRIA, Equipe Projet Gamma 3, F-78153 Le Chesnay, France
[2] Univ Technol Troyes, Equipe ICD Gamma 3, INRIA, F-10010 Troyes, France
[3] Univ Technol Troyes, UTT, F-10010 Troyes, France
关键词
D O I
10.1016/j.crma.2011.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a need for finite elements of degree 2 or more to solve various P.D.E. problems. This Note discusses the theoretical issues about Lagrange simplicial finite elements of arbitrary order and dimension. The purpose is to give the theoretical frame to be applied in actual cases (2 and 3 dimension, degree 2,3,...). We show how finite elements and Bezier patches are related and we deduce a validity condition. (C) 2011 Academie des sciences. Publie par Elsevier Masson SAS. Tous droits reserves.
引用
收藏
页码:905 / 910
页数:6
相关论文
共 50 条
  • [31] High-order finite elements for structural dynamics applications
    Lisandrin, Paolo
    Van Tooren, Michel
    JOURNAL OF AIRCRAFT, 2008, 45 (02): : 388 - 401
  • [32] Geometrical validity of high-order triangular finite elements
    A. Johnen
    J.-F. Remacle
    C. Geuzaine
    Engineering with Computers, 2014, 30 : 375 - 382
  • [33] Geometrical validity of high-order triangular finite elements
    Johnen, A.
    Remacle, J. -F.
    Geuzaine, C.
    ENGINEERING WITH COMPUTERS, 2014, 30 (03) : 375 - 382
  • [34] Nonconforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    SIAM Journal on Scientific Computing, 2019, 41 (04):
  • [35] NONCONFORMING MESH REFINEMENT FOR HIGH-ORDER FINITE ELEMENTS
    Cerveny, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : C367 - C392
  • [36] High-order finite elements for the solution of Helmholtz problems
    Christodoulou, K.
    Laghrouche, O.
    Mohamed, M. S.
    Trevelyan, J.
    COMPUTERS & STRUCTURES, 2017, 191 : 129 - 139
  • [37] DISCRETIZATION AND COMPUTATIONAL ERRORS IN HIGH-ORDER FINITE ELEMENTS
    FRIED, I
    AIAA JOURNAL, 1971, 9 (10) : 2071 - &
  • [38] High convergence order finite elements with lumped mass matrix
    Technical Univ of Denmark, Lyngby, Denmark
    Int J Numer Methods Eng, 11 (1879-1888):
  • [39] High accuracy nonconforming finite elements for fourth order problems
    Ming Wang
    PengHe Zu
    Shuo Zhang
    Science China Mathematics, 2012, 55 : 2183 - 2192
  • [40] High Order Mass-Lumping Finite Elements on Simplexes
    Cui, Tao
    Leng, Wei
    Lin, Deng
    Ma, Shichao
    Zhang, Linbo
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (02) : 331 - 350