Hypergeometric summation algorithms for high-order finite elements

被引:8
|
作者
Becirovic, A.
Paule, P.
Pillwein, V.
Riese, A.
Schneider, C.
Schoeberl, J.
机构
[1] Johannes Kepler Univ, FWF Start Projekt Finite Elemente U192 3D HP, Johan Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Johannes Kepler Univ, Numer & Symbol Sci Comp SFB F013, A-4040 Linz, Austria
[3] Johannes Kepler Univ, RISC, A-4040 Linz, Austria
关键词
high-order finite elements; Sobolev spaces; hypergeometric summation;
D O I
10.1007/s00607-006-0179-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
High-order finite elements are usually defined by means of certain orthogonal polynomials. The performance of iterative solution methods depends on the condition number of the system matrix, which itself depends on the chosen basis functions. The goal is now to design basis functions minimizing the condition number, and which can be computed efficiently. In this paper, we demonstrate the application of recently developed computer algebra algorithms for hypergeometric summation to derive cheap recurrence relations allowing a simple implementation for fast basis function evaluation.
引用
收藏
页码:235 / 249
页数:15
相关论文
共 50 条
  • [1] Hypergeometric Summation Algorithms for High-order Finite Elements
    A. Bećirović
    P. Paule
    V. Pillwein
    A. Riese
    C. Schneider
    J. Schöberl
    [J]. Computing, 2006, 78 : 235 - 249
  • [2] Recurrences for Quadrilateral High-Order Finite Elements
    Beuchler, Sven
    Haubold, Tim
    Pillwein, Veronika
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2022, 16 (04)
  • [3] Recurrences for Quadrilateral High-Order Finite Elements
    Sven Beuchler
    Tim Haubold
    Veronika Pillwein
    [J]. Mathematics in Computer Science, 2022, 16
  • [4] HIGH-ORDER CURVED FINITE-ELEMENTS
    WACHSPRESS, EL
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (05) : 735 - 745
  • [5] High-order conforming finite elements on pyramids
    Nigam, Nilima
    Phillips, Joel
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 448 - 483
  • [6] Efficient visualization of high-order finite elements
    Remacle, Jean-Francois
    Chevaugeon, Nicolas
    Marchandise, Emilie
    Geuzaine, Christophe
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) : 750 - 771
  • [7] Comparison of high-order curved finite elements
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (08) : 719 - 734
  • [8] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [9] Nonconforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    [J]. SIAM Journal on Scientific Computing, 2019, 41 (04):
  • [10] High-order finite elements for the solution of Helmholtz problems
    Christodoulou, K.
    Laghrouche, O.
    Mohamed, M. S.
    Trevelyan, J.
    [J]. COMPUTERS & STRUCTURES, 2017, 191 : 129 - 139