Recurrences for Quadrilateral High-Order Finite Elements

被引:1
|
作者
Beuchler, Sven [1 ,2 ]
Haubold, Tim [1 ]
Pillwein, Veronika [3 ]
机构
[1] Leibniz Univ Hannover, Inst Appl Math IfAM, Welfengarten 1, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Cluster Excellence PhoenixD Photon Opt & Engn Inno, Hannover, Germany
[3] Johannes Kepler Univ Linz, RISC, Altenberger Str 69, A-4040 Linz, Austria
关键词
Orthogonal polynomials; High order finite element methods; Recurrence equations; Holonomic systems; HANGING NODES; ALGORITHMS;
D O I
10.1007/s11786-022-00547-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At the same time, the computations get much more involved and any simplification, such as efficient recurrence relations, are most welcome. Recently, computer algebra algorithms have been applied to improve FEMs in several ways. In this note, we present a symbolic approach to an issue occuring when working with quadrilateral elements.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Recurrences for Quadrilateral High-Order Finite Elements
    Sven Beuchler
    Tim Haubold
    Veronika Pillwein
    [J]. Mathematics in Computer Science, 2022, 16
  • [2] Basis functions for triangular and quadrilateral high-order elements
    Warburton, TC
    Sherwin, SJ
    Karniadakis, GE
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05): : 1671 - 1695
  • [3] HIGH-ORDER CURVED FINITE-ELEMENTS
    WACHSPRESS, EL
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (05) : 735 - 745
  • [4] High-order conforming finite elements on pyramids
    Nigam, Nilima
    Phillips, Joel
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 448 - 483
  • [5] Efficient visualization of high-order finite elements
    Remacle, Jean-Francois
    Chevaugeon, Nicolas
    Marchandise, Emilie
    Geuzaine, Christophe
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) : 750 - 771
  • [6] Comparison of high-order curved finite elements
    Sevilla, Ruben
    Fernandez-Mendez, Sonia
    Huerta, Antonio
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (08) : 719 - 734
  • [7] A hierarchic high-order c1 quadrilateral plate finite element
    Ferreira, L.J.F.
    Bittencourt, M.L.
    [J]. Civil-Comp Proceedings, 2014, 106
  • [8] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [9] Hypergeometric summation algorithms for high-order finite elements
    Becirovic, A.
    Paule, P.
    Pillwein, V.
    Riese, A.
    Schneider, C.
    Schoeberl, J.
    [J]. COMPUTING, 2006, 78 (03) : 235 - 249
  • [10] Nonconforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    [J]. SIAM Journal on Scientific Computing, 2019, 41 (04):