Hypergeometric summation algorithms for high-order finite elements

被引:8
|
作者
Becirovic, A.
Paule, P.
Pillwein, V.
Riese, A.
Schneider, C.
Schoeberl, J.
机构
[1] Johannes Kepler Univ, FWF Start Projekt Finite Elemente U192 3D HP, Johan Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Johannes Kepler Univ, Numer & Symbol Sci Comp SFB F013, A-4040 Linz, Austria
[3] Johannes Kepler Univ, RISC, A-4040 Linz, Austria
关键词
high-order finite elements; Sobolev spaces; hypergeometric summation;
D O I
10.1007/s00607-006-0179-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
High-order finite elements are usually defined by means of certain orthogonal polynomials. The performance of iterative solution methods depends on the condition number of the system matrix, which itself depends on the chosen basis functions. The goal is now to design basis functions minimizing the condition number, and which can be computed efficiently. In this paper, we demonstrate the application of recently developed computer algebra algorithms for hypergeometric summation to derive cheap recurrence relations allowing a simple implementation for fast basis function evaluation.
引用
收藏
页码:235 / 249
页数:15
相关论文
共 50 条
  • [31] High-order boundary conditions and finite elements for infinite domains
    Givoli, D
    Patlashenko, I
    Keller, JB
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) : 13 - 39
  • [32] HIGH-ORDER APPROXIMATION OF GAUSSIAN CURVATURE WITH REGGE FINITE ELEMENTS
    Gawlik, Evan S.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1801 - 1821
  • [33] High-order cut finite elements for the elastic wave equation
    Sticko, Simon
    Ludvigsson, Gustav
    Kreiss, Gunilla
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (03)
  • [34] Using high-order finite elements in problem's with movement
    Antunes, OJ
    Bastos, JPA
    Sadowski, N
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 529 - 532
  • [35] High-order plate finite elements for smart structure analysis
    Polit, O.
    D'Ottavio, M.
    Vidal, P.
    [J]. COMPOSITE STRUCTURES, 2016, 151 : 81 - 90
  • [36] Comparison of multigrid algorithms for high-order continuous finite element discretizations
    Sundar, Hari
    Stadler, Georg
    Biros, George
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) : 664 - 680
  • [37] Reevaluation of high-order finite difference and finite volume algorithms with freestream preservation satisfied
    Dong, Yidao
    Deng, Xiaogang
    Xu, Dan
    Wang, Guangxue
    [J]. COMPUTERS & FLUIDS, 2017, 156 : 343 - 352
  • [38] Nonlinear extended magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Schnack, DD
    Pankin, AY
    Brennan, DP
    Tian, H
    Barnes, DC
    Kruger, SE
    Held, ED
    Kim, CC
    Li, XS
    Kaushik, DK
    Jardin, SC
    [J]. SciDAC 2005: Scientific Discovery Through Advanced Computing, 2005, 16 : 25 - 34
  • [39] Non-conforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    [J]. arXiv, 2019,
  • [40] ANALYSIS OF TRANSFORMER LEAKAGE PHENOMENA BY HIGH-ORDER FINITE-ELEMENTS
    SILVESTER, P
    KONRAD, A
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1973, PA92 (06): : 1843 - 1855