Painleve I double scaling limit in the cubic random matrix model

被引:15
|
作者
Bleher, Pavel [1 ]
Deano, Alfredo [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
基金
美国国家科学基金会;
关键词
Random matrices; asymptotic representation in the complex domain; Riemann-Hilbert problems; topological expansion; partition function; double scaling limit; Painleve I equation; ORTHOGONAL POLYNOMIALS; PARTITION-FUNCTION; ASYMPTOTICS; RESPECT;
D O I
10.1142/S2010326316500040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the double scaling asymptotic behavior of the recurrence coefficients and the partition function at the critical point of the NxN Hermitian random matrix model with cubic potential. We prove that the recurrence coefficients admit an asymptotic expansion in powers of N-2/5, and in the leading order the asymptotic behavior of the recurrence coefficients is given by a Boutroux tronquee solution to the Painleve I equation. We also obtain the double scaling limit of the partition function, and we prove that the poles of the tronquee solution are limits of zeros of the partition function. The tools used include the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method for the corresponding family of complex orthogonal polynomials and their recurrence coefficients, together with the Toda equation in the parameter space.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Universality of the double scaling limit in random matrix models
    Claeys, Tom
    Kuijlaars, Arno B. J.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) : 1573 - 1603
  • [2] Double scaling limit in the random matrix model: The Riemann-Hilbert approach
    Bleher, P
    Its, A
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (04) : 433 - 516
  • [3] Discrete Painleve system and the double scaling limit of the matrix model for irregular conformal block and gauge theory
    Itoyama, H.
    Oota, T.
    Yano, Katsuya
    PHYSICS LETTERS B, 2019, 789 : 605 - 609
  • [4] Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations
    Bleher, P
    Eynard, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3085 - 3105
  • [5] The double scaling limit of random tensor models
    Bonzom, Valentin
    Gurau, Razvan
    Ryan, James P.
    Tanasa, Adrian
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [6] The double scaling limit of random tensor models
    Valentin Bonzom
    Razvan Gurau
    James P. Ryan
    Adrian Tanasa
    Journal of High Energy Physics, 2014
  • [7] Universality of a double scaling limit near singular edge points in random matrix models
    Claeys, T.
    Vanlessen, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 499 - 532
  • [8] Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models
    T. Claeys
    M. Vanlessen
    Communications in Mathematical Physics, 2007, 273 : 499 - 532
  • [9] Numerical analysis of the double scaling limit in the string type IIB matrix model
    Horata, S
    Egawa, HS
    PHYSICAL REVIEW LETTERS, 2001, 86 (20) : 4455 - 4458
  • [10] A possible IIB superstring matrix model with Euler characteristic and a double scaling limit
    Kristjansen, C. F.
    Olesen, P.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 405 (1-2):