Painleve I double scaling limit in the cubic random matrix model

被引:15
|
作者
Bleher, Pavel [1 ]
Deano, Alfredo [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
基金
美国国家科学基金会;
关键词
Random matrices; asymptotic representation in the complex domain; Riemann-Hilbert problems; topological expansion; partition function; double scaling limit; Painleve I equation; ORTHOGONAL POLYNOMIALS; PARTITION-FUNCTION; ASYMPTOTICS; RESPECT;
D O I
10.1142/S2010326316500040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the double scaling asymptotic behavior of the recurrence coefficients and the partition function at the critical point of the NxN Hermitian random matrix model with cubic potential. We prove that the recurrence coefficients admit an asymptotic expansion in powers of N-2/5, and in the leading order the asymptotic behavior of the recurrence coefficients is given by a Boutroux tronquee solution to the Painleve I equation. We also obtain the double scaling limit of the partition function, and we prove that the poles of the tronquee solution are limits of zeros of the partition function. The tools used include the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method for the corresponding family of complex orthogonal polynomials and their recurrence coefficients, together with the Toda equation in the parameter space.
引用
收藏
页数:58
相关论文
共 50 条
  • [31] SCALING LAWS OF THE ADDITIVE RANDOM-MATRIX MODEL
    LENZ, G
    ZYCZKOWSKI, K
    SAHER, D
    PHYSICAL REVIEW A, 1991, 44 (12): : 8043 - 8050
  • [32] Massive scaling limit of the β-deformed matrix model of Selberg type
    Itoyama, H.
    Oota, T.
    Yonezawa, N.
    PHYSICAL REVIEW D, 2010, 82 (08):
  • [33] Scaling limit of vicious walks and two-matrix model
    Katori, M
    Tanemura, H
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 011105
  • [34] Large n limit of Gaussian random matrices with external source, part III:: Double scaling limit
    Bleher, Pavel M.
    Kuijlaars, Arno B. J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 481 - 517
  • [35] Large n Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit
    Pavel M. Bleher
    Arno B. J. Kuijlaars
    Communications in Mathematical Physics, 2007, 270 : 481 - 517
  • [36] The double scaling limit of the multi-orientable tensor model
    Gurau, Razvan
    Tanasa, Adrian
    Youmans, Donald R.
    EPL, 2015, 111 (02)
  • [37] The scaling limit of random outerplanar maps
    Caraceni, Alessandra
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1667 - 1686
  • [38] The CRT is the scaling limit of random dissections
    Curien, Nicolas
    Haas, Benedicte
    Kortchemski, Igor
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) : 304 - 327
  • [39] Edge Scaling Limit of the Spectral Radius for Random Normal Matrix Ensembles at Hard Edge
    Seong-Mi Seo
    Journal of Statistical Physics, 2020, 181 : 1473 - 1489
  • [40] Scaling limit of critical random trees in random environment
    Conchon-Kerjan, Guillaume
    Kious, Daniel
    Mailler, Cecile
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29