Painleve I double scaling limit in the cubic random matrix model

被引:15
|
作者
Bleher, Pavel [1 ]
Deano, Alfredo [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
基金
美国国家科学基金会;
关键词
Random matrices; asymptotic representation in the complex domain; Riemann-Hilbert problems; topological expansion; partition function; double scaling limit; Painleve I equation; ORTHOGONAL POLYNOMIALS; PARTITION-FUNCTION; ASYMPTOTICS; RESPECT;
D O I
10.1142/S2010326316500040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the double scaling asymptotic behavior of the recurrence coefficients and the partition function at the critical point of the NxN Hermitian random matrix model with cubic potential. We prove that the recurrence coefficients admit an asymptotic expansion in powers of N-2/5, and in the leading order the asymptotic behavior of the recurrence coefficients is given by a Boutroux tronquee solution to the Painleve I equation. We also obtain the double scaling limit of the partition function, and we prove that the poles of the tronquee solution are limits of zeros of the partition function. The tools used include the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method for the corresponding family of complex orthogonal polynomials and their recurrence coefficients, together with the Toda equation in the parameter space.
引用
收藏
页数:58
相关论文
共 50 条
  • [41] Scaling properties of Lyapunov spectra for the band random matrix model
    Kottos, T
    Politi, A
    Izrailev, FM
    Ruffo, S
    PHYSICAL REVIEW E, 1996, 53 (06) : R5553 - R5556
  • [42] Edge Scaling Limit of the Spectral Radius for Random Normal Matrix Ensembles at Hard Edge
    Seo, Seong-Mi
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1473 - 1489
  • [43] MATRIX MODELS WITHOUT SCALING LIMIT
    BONORA, L
    XIONG, CS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (17): : 2973 - 2992
  • [44] CDT AS A SCALING LIMIT OF MATRIX MODELS
    Ambjorn, Jan
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 923 - 937
  • [45] Complex Sachdev-Ye-Kitaev model in the double scaling limit
    Berkooz, Micha
    Narovlansky, Vladimir
    Raj, Himanshu
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)
  • [46] Numerical studies of the double scaling limit in a large N reduced model
    Nakajima, T
    Nishimura, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 813 - 815
  • [47] Complex Sachdev-Ye-Kitaev model in the double scaling limit
    Micha Berkooz
    Vladimir Narovlansky
    Himanshu Raj
    Journal of High Energy Physics, 2021
  • [48] LARGEST EIGENVALUE DISTRIBUTION IN THE DOUBLE SCALING LIMIT OF MATRIX MODELS - A COULOMB FLUID APPROACH
    CHEN, Y
    ERIKSEN, KJ
    TRACY, CA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (07): : L207 - L211
  • [49] Theory of the string equation in the double-scaling limit of 1-matrix models
    Novikov, SP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2249 - 2271
  • [50] Hexagon bootstrap in the double scaling limit
    Chestnov, Vsevolod
    Papathanasiou, Georgios
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)