Double scaling limit in the random matrix model: The Riemann-Hilbert approach

被引:92
|
作者
Bleher, P [1 ]
Its, A [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
D O I
10.1002/cpa.10065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of the double scaling limit in the unitary matrix model with quartic interaction, and we show that the correlation functions in the double scaling limit are expressed in terms of the integrable kernel determined by the psi function for the Hastings-McLeod solution to the Painleve II equation. The proof is based on the Riemann-Hilbert approach, and the central point of the proof is an analysis of analytic semiclassical asymptotics for the psi function at the critical point in the presence of four coalescing turning points. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:433 / 516
页数:84
相关论文
共 50 条
  • [1] The Riemann-Hilbert Approach to Double Scaling Limit of Random Matrix Eigenvalues Near the "Birth of a Cut" Transition
    Mo, Man Yue
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [2] ON A DOUBLE RIEMANN-HILBERT APPROACH TO STIMULATED RAMAN-SCATTERING
    DE, M
    CHOWDHURY, AR
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (08) : 2254 - 2257
  • [3] Matrix Riemann-Hilbert problems and factorization on Riemann surfaces
    Camara, M. C.
    dos Santos, A. F.
    dos Santos, Pedro F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 228 - 254
  • [4] A Riemann-Hilbert approach in the form of a block matrix for the coupled matrix integrable system
    Zhang, Heyan
    Zhang, Yi
    Xia, Pei
    Zhuang, Yindong
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [5] A Riemann-Hilbert approach to rotating attractors
    Camara, M. C.
    Cardoso, G. L.
    Mohaupt, T.
    Nampuri, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):
  • [6] A Riemann-Hilbert Approach for the Novikov Equation
    Boutet De Monvel, Anne
    Shepelsky, Dmitry
    Zielinski, Lech
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [7] A Riemann-Hilbert approach to the Laplace equation
    Fokas, AS
    Kapaev, AA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) : 770 - 804
  • [8] A Riemann-Hilbert approach to Painleve IV
    van der Put, Marius
    Top, Jaap
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 : 165 - 177
  • [9] A Riemann-Hilbert approach to the Akhiezer polynomials
    Chen, Yang
    Its, Alexander R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 973 - 1003
  • [10] Numerical Solution of Riemann-Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials
    Olver, Sheehan
    Trogdon, Thomas
    CONSTRUCTIVE APPROXIMATION, 2014, 39 (01) : 101 - 149