Nonnil-Laskerian rings

被引:2
|
作者
Moulahi, Samir [1 ,2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, LR21ES10, Carthage 7000, Tunisia
[2] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Sousse 4003, Tunisia
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2022年 / 63卷 / 04期
关键词
Laskerian rings; Nonnil-Noetherian rings; Nonnil-Laskerian rings; Nilradical of ring; Divided prime ideal;
D O I
10.1007/s13366-021-00603-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity. In this paper we introduce the concept of Nonnil-Laskerian ring that is related to the class of Laskerian rings. A ring R is said to be Nonnil-Laskerian if every nonnil ideal I of R is decomposable. We show that Nonnil-Laskerian rings enjoy analogs of many properties of Laskerian ring. We give an example of Nonnil-Laskerian ring, wich is not Laskerian. We study the Nonnil-Laskerian property over the polynomial and formel power series rings. In particular, we show that we have not an equivalence between Nonnil-Laskerian and Nonnil-Noetherian concepts in R[[X]] and R[X], contrary to the Laskerian and Noetherian concepts.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条