Nonnil-Laskerian rings

被引:2
|
作者
Moulahi, Samir [1 ,2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, LR21ES10, Carthage 7000, Tunisia
[2] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Sousse 4003, Tunisia
关键词
Laskerian rings; Nonnil-Noetherian rings; Nonnil-Laskerian rings; Nilradical of ring; Divided prime ideal;
D O I
10.1007/s13366-021-00603-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity. In this paper we introduce the concept of Nonnil-Laskerian ring that is related to the class of Laskerian rings. A ring R is said to be Nonnil-Laskerian if every nonnil ideal I of R is decomposable. We show that Nonnil-Laskerian rings enjoy analogs of many properties of Laskerian ring. We give an example of Nonnil-Laskerian ring, wich is not Laskerian. We study the Nonnil-Laskerian property over the polynomial and formel power series rings. In particular, we show that we have not an equivalence between Nonnil-Laskerian and Nonnil-Noetherian concepts in R[[X]] and R[X], contrary to the Laskerian and Noetherian concepts.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条
  • [21] Some results on Nonnil-multiplication rings
    Dabbabi, Abdelamir
    Moulahi, Samir
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (03): : 753 - 760
  • [22] On graded-nonnil-Noetherian commutative rings
    Assarrar, Anass
    Mahdou, Najib
    QUAESTIONES MATHEMATICAE, 2024,
  • [23] Some results on Nonnil-multiplication rings
    Abdelamir Dabbabi
    Samir Moulahi
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 753 - 760
  • [24] Maximal non-nonnil-principal ideal rings
    Kumar, Rahul
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [25] PRIME DIVISORS OF POWERS OF IDEALS IN SOME LASKERIAN RINGS
    VISWESWARAN, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 73 (02) : 203 - 209
  • [26] Nonnil-Noetherian Rings and Formal Power Series
    Benhissi, Ali
    ALGEBRA COLLOQUIUM, 2020, 27 (03) : 361 - 368
  • [27] On nonnil-very strong finite type commutative rings
    Dabbabi, Abdelamir
    Benhissi, Ali
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 111 - 120
  • [28] THE LASKERIAN PROPERTY, POWER-SERIES RINGS AND NOETHERIAN SPECTRA
    GILMER, R
    HEINZER, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 79 (01) : 13 - 16
  • [29] ON NONNIL-EXACT SEQUENCES AND NONNIL-COMMUTATIVE DIAGRAMS
    Zhao, Wei
    Zhou, Dechuan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1215 - 1231
  • [30] Laskerian Lattices
    C. Jayaram
    Czechoslovak Mathematical Journal, 2003, 53 : 351 - 363