Nonnil-Laskerian rings

被引:2
|
作者
Moulahi, Samir [1 ,2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, LR21ES10, Carthage 7000, Tunisia
[2] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Sousse 4003, Tunisia
关键词
Laskerian rings; Nonnil-Noetherian rings; Nonnil-Laskerian rings; Nilradical of ring; Divided prime ideal;
D O I
10.1007/s13366-021-00603-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity. In this paper we introduce the concept of Nonnil-Laskerian ring that is related to the class of Laskerian rings. A ring R is said to be Nonnil-Laskerian if every nonnil ideal I of R is decomposable. We show that Nonnil-Laskerian rings enjoy analogs of many properties of Laskerian ring. We give an example of Nonnil-Laskerian ring, wich is not Laskerian. We study the Nonnil-Laskerian property over the polynomial and formel power series rings. In particular, we show that we have not an equivalence between Nonnil-Laskerian and Nonnil-Noetherian concepts in R[[X]] and R[X], contrary to the Laskerian and Noetherian concepts.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条
  • [31] LASKERIAN PAIRS
    VISWESWARAN, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) : 87 - 110
  • [32] Laskerian lattices
    Jayaram, C
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (02) : 351 - 363
  • [33] On nonnil-commutative diagrams and nonnil-projective modules
    Zhao, Wei
    Wang, Meiqi
    Pu, Yongyan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2854 - 2867
  • [34] On nonnil-coherent modules and nonnil-Noetherian modules
    El Haddaoui, Younes
    Kim, Hwankoo
    Mahdou, Najib
    OPEN MATHEMATICS, 2022, 20 (01): : 1521 - 1537
  • [35] A Characterization of Nonnil-Projective Modules
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El houssaine
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 1 - 14
  • [36] On nonnil-pure theories
    Haddaoui, Younes El
    Kim, Hwankoo
    Mahdou, Najib
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024,
  • [37] On Weakly Laskerian and Weakly Cofinite Modules
    Khashyarmanesh, Kazem
    Kosan, M. Tamer
    Sahinkaya, Serap
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 693 - 698
  • [38] WEAKLY LASKERIAN MODULES AND WEAK COFINITENESS
    Vakili, Bahram
    Azami, Jafar
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (02) : 761 - 770
  • [39] RESULTS ON LOCAL COHOMOLOGY OF WEAKLY LASKERIAN MODULES
    Zamani, Naser
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (02) : 303 - 308
  • [40] Factoring nonnil ideals into prime and invertible ideals
    Badawi, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 665 - 672