Nonnil-Laskerian rings

被引:2
|
作者
Moulahi, Samir [1 ,2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, LR21ES10, Carthage 7000, Tunisia
[2] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Sousse 4003, Tunisia
关键词
Laskerian rings; Nonnil-Noetherian rings; Nonnil-Laskerian rings; Nilradical of ring; Divided prime ideal;
D O I
10.1007/s13366-021-00603-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with unity. In this paper we introduce the concept of Nonnil-Laskerian ring that is related to the class of Laskerian rings. A ring R is said to be Nonnil-Laskerian if every nonnil ideal I of R is decomposable. We show that Nonnil-Laskerian rings enjoy analogs of many properties of Laskerian ring. We give an example of Nonnil-Laskerian ring, wich is not Laskerian. We study the Nonnil-Laskerian property over the polynomial and formel power series rings. In particular, we show that we have not an equivalence between Nonnil-Laskerian and Nonnil-Noetherian concepts in R[[X]] and R[X], contrary to the Laskerian and Noetherian concepts.
引用
收藏
页码:697 / 706
页数:10
相关论文
共 50 条
  • [1] Nonnil–Laskerian rings
    Samir Moulahi
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 697 - 706
  • [2] NONNIL-P-COHERENT RINGS AND NONNIL-PP-RINGS
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El houssaine
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (05) : 1223 - 1240
  • [3] On Strongly Nonnil-Coherent Rings and Strongly Nonnil-Noetherian Rings
    Alhazmy, Khaled
    Almahdi, Fuad Ali Ahmed
    El Haddaoui, Younes
    Mahdou, Najib
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
  • [4] On Strongly Nonnil-Coherent Rings and Strongly Nonnil-Noetherian Rings
    Khaled Alhazmy
    Fuad Ali Ahmed Almahdi
    Younes El Haddaoui
    Najib Mahdou
    Bulletin of the Iranian Mathematical Society, 2024, 50
  • [5] ON NONNIL-SFT RINGS
    Benhissi, Ali
    Dabbabi, Abdelamir
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 663 - 677
  • [6] On Nonnil-Noetherian Rings
    Yang, X. Y.
    Liu, Z. K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (06) : 1215 - 1223
  • [7] FUZZY IDEALS IN LASKERIAN RINGS
    Shah, Tariq
    Saeed, Muhammad
    MATEMATICKI VESNIK, 2013, 65 (01): : 74 - 81
  • [8] Weakly Laskerian rings versus Noetherian rings
    Bahmanpour, Kamal
    Divaani-Aazar, Kamran
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 239 - 256
  • [9] Nonnil-coherent rings
    bacem K.
    Ali B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (2): : 297 - 305
  • [10] On Nonnil-Noetherian rings
    Badawi, A
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (04) : 1669 - 1677