CSmiRTar: Condition-Specific microRNA targets database

被引:13
|
作者
Wu, Wei-Sheng [1 ]
Tu, Bor-Wen [1 ]
Chen, Tsung-Te [1 ]
Hou, Shang-Wei [1 ]
Tseng, Joseph T. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Biotechnol & Bioind Sci, Tainan, Taiwan
来源
PLOS ONE | 2017年 / 12卷 / 07期
关键词
IN-VIVO; RESOURCE; MIRNA; EXPRESSION; GENE; GENOMICS; SIRNAS; ATLAS; CERNA; PTEN;
D O I
10.1371/journal.pone.0181231
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time. To solve these two problems, we construct a database called CSmiRTar (Condition-Specific miRNA Targets). CSmiRTar collects computationally predicted targets of 2588 human miRNAs and 1945 mouse miRNAs from four most widely used miRNA target prediction databases (miRDB, TargetScan, microRNA. org and DIANA-microT) and implements functional filters which allows users to search (i) a miRNA's targets expressed in a specific tissue or/and related to a specific disease, (ii) multiple miRNAs' common targets expressed in a specific tissue or/and related to a specific disease, (iii) a gene's miRNAs related to a specific disease, and (iv) multiple genes' common miRNAs related to a specific disease. We believe that CSmiRTar will be a useful database for biologists to study the molecular mechanisms of post-transcriptional regulation in human or mouse.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] How condition-specific do measures of pain intensity need to be?
    Geisser, Michael E.
    Kratz, Anna L.
    PAIN, 2018, 159 (06) : 1001 - 1002
  • [42] Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum
    Liew, Yi Jin
    Li, Yong
    Baumgarten, Sebastian
    Voolstra, Christian R.
    Aranda, Manuel
    PLOS GENETICS, 2017, 13 (02):
  • [43] Condition-Specific Preference-Based Measures: Benefit or Burden?
    Versteegh, Matthijs M.
    Leunis, Annemieke
    Uyl-de Groot, Carin A.
    Stolk, Elly A.
    VALUE IN HEALTH, 2012, 15 (03) : 504 - 513
  • [44] Urinary incontinence, condition-specific functional loss, and psychological distress
    Bogner, HR
    Gallo, JJ
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2002, 50 (07) : 1311 - 1311
  • [45] Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance
    Jung, Sunhee
    Smith, Jennifer J.
    von Haller, Priska D.
    Dilworth, David J.
    Sitko, Katherine A.
    Miller, Leslie R.
    Saleem, Ramsey A.
    Goodlett, David R.
    Aitchison, John D.
    MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (05) : 1421 - 1435
  • [46] CRUP: A comprehensive framework to predict condition-specific regulatory units
    Heinrich, V.
    Ramisch, A.
    Glaser, L. V.
    Fuchs, A.
    Yang, X.
    Benner, P.
    Schoepflin, R.
    Li, N.
    Kinkley, S.
    Hillmann, A.
    Longinotto, J.
    Heyne, S.
    Czepukojc, B.
    Kessler, S. M.
    Kiemer, A. K.
    Cadenas, C.
    Arrigoni, L.
    Gasparoni, N.
    Manke, T.
    Pap, T.
    Pospisilik, A.
    Hengstler, J.
    Walter, J.
    Meijsing, S. H.
    Chung, H.
    Vingron, M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1730 - 1730
  • [47] Validation of a condition-specific measure for women having an abnormal screening mammography
    Brodersen, John
    Thorsen, Hanne
    Kreiner, Svend
    VALUE IN HEALTH, 2007, 10 (04) : 294 - 304
  • [48] Several Metarhizium Species Produce Ergot Alkaloids in a Condition-Specific Manner
    Leadmon, Caroline E.
    Sampson, Jessi K.
    Maust, Matthew D.
    Macias, Angie M.
    Rehner, Stephen A.
    Kasson, Matthew T.
    Panaccione, Daniel G.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2020, 86 (14)
  • [49] Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks
    Tchourine, Konstantine
    Vogel, Christine
    Bonneau, Richard
    CELL REPORTS, 2018, 23 (02): : 376 - 388
  • [50] Association of body weight with condition-specific quality of life in male veterans
    Arterburn, DE
    McDonell, MB
    Hedrick, SC
    Diehr, P
    Fihn, SD
    AMERICAN JOURNAL OF MEDICINE, 2004, 117 (10): : 738 - 746