CSmiRTar: Condition-Specific microRNA targets database

被引:13
|
作者
Wu, Wei-Sheng [1 ]
Tu, Bor-Wen [1 ]
Chen, Tsung-Te [1 ]
Hou, Shang-Wei [1 ]
Tseng, Joseph T. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Biotechnol & Bioind Sci, Tainan, Taiwan
来源
PLOS ONE | 2017年 / 12卷 / 07期
关键词
IN-VIVO; RESOURCE; MIRNA; EXPRESSION; GENE; GENOMICS; SIRNAS; ATLAS; CERNA; PTEN;
D O I
10.1371/journal.pone.0181231
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time. To solve these two problems, we construct a database called CSmiRTar (Condition-Specific miRNA Targets). CSmiRTar collects computationally predicted targets of 2588 human miRNAs and 1945 mouse miRNAs from four most widely used miRNA target prediction databases (miRDB, TargetScan, microRNA. org and DIANA-microT) and implements functional filters which allows users to search (i) a miRNA's targets expressed in a specific tissue or/and related to a specific disease, (ii) multiple miRNAs' common targets expressed in a specific tissue or/and related to a specific disease, (iii) a gene's miRNAs related to a specific disease, and (iv) multiple genes' common miRNAs related to a specific disease. We believe that CSmiRTar will be a useful database for biologists to study the molecular mechanisms of post-transcriptional regulation in human or mouse.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] CRUP: a comprehensive framework to predict condition-specific regulatory units
    Anna Ramisch
    Verena Heinrich
    Laura V. Glaser
    Alisa Fuchs
    Xinyi Yang
    Philipp Benner
    Robert Schöpflin
    Na Li
    Sarah Kinkley
    Anja Römer-Hillmann
    John Longinotto
    Steffen Heyne
    Beate Czepukojc
    Sonja M. Kessler
    Alexandra K. Kiemer
    Cristina Cadenas
    Laura Arrigoni
    Nina Gasparoni
    Thomas Manke
    Thomas Pap
    John A. Pospisilik
    Jan Hengstler
    Jörn Walter
    Sebastiaan H. Meijsing
    Ho-Ryun Chung
    Martin Vingron
    Genome Biology, 20
  • [32] CRUP: a comprehensive framework to predict condition-specific regulatory units
    Ramisch, Anna
    Heinrich, Verena
    Glaser, Laura V.
    Fuchs, Alisa
    Yang, Xinyi
    Benner, Philipp
    Schoepflin, Robert
    Li, Na
    Kinkley, Sarah
    Roemer-Hillmann, Anja
    Longinotto, John
    Heyne, Steffen
    Czepukojc, Beate
    Kessler, Sonja M.
    Kiemer, Alexandra K.
    Cadenas, Cristina
    Arrigoni, Laura
    Gasparoni, Nina
    Manke, Thomas
    Pap, Thomas
    Pospisilik, John A.
    Hengstler, Jan
    Walter, Joern
    Meijsing, Sebastiaan H.
    Chung, Ho-Ryun
    Vingron, Martin
    GENOME BIOLOGY, 2019, 20 (01)
  • [33] Condition-Specific Competition Governs the Geographic Distribution and Diversity of Ectoparasites
    Malenke, J. R.
    Newbold, N.
    Clayton, D. H.
    AMERICAN NATURALIST, 2011, 177 (04): : 522 - 534
  • [34] Condition-specific competition: implications for the altitudinal distribution of stream fishes
    Taniguchi, Y
    Nakano, S
    ECOLOGY, 2000, 81 (07) : 2027 - 2039
  • [35] Differential Expression Analysis Utilizing Condition-Specific Metabolic Pathways
    Mattei, Gianluca
    Gan, Zhuohui
    Ramazzotti, Matteo
    Palsson, Bernhard O.
    Zielinski, Daniel C.
    METABOLITES, 2023, 13 (11)
  • [36] EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks
    Sambaturu, Narmada
    Mishra, Madhulika
    Chandra, Nagasuma
    BMC GENOMICS, 2016, 17
  • [37] The McCollough Facial Rejuvenation System: A Condition-Specific Classification Algorithm
    McCollough, E. Gaylon
    FACIAL PLASTIC SURGERY, 2011, 27 (01) : 112 - 123
  • [38] EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks
    Sambaturu, Narmada
    Mishra, Madhulika
    Chandra, Nagasuma
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 177 - 182
  • [39] Prediction of condition-specific regulatory genes using machine learning
    Song, Qi
    Lee, Jiyoung
    Akter, Shamima
    Rogers, Matthew
    Grene, Ruth
    Li, Song
    NUCLEIC ACIDS RESEARCH, 2020, 48 (11)
  • [40] EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks
    Narmada Sambaturu
    Madhulika Mishra
    Nagasuma Chandra
    BMC Genomics, 17