CSmiRTar: Condition-Specific microRNA targets database

被引:13
|
作者
Wu, Wei-Sheng [1 ]
Tu, Bor-Wen [1 ]
Chen, Tsung-Te [1 ]
Hou, Shang-Wei [1 ]
Tseng, Joseph T. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Biotechnol & Bioind Sci, Tainan, Taiwan
来源
PLOS ONE | 2017年 / 12卷 / 07期
关键词
IN-VIVO; RESOURCE; MIRNA; EXPRESSION; GENE; GENOMICS; SIRNAS; ATLAS; CERNA; PTEN;
D O I
10.1371/journal.pone.0181231
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time. To solve these two problems, we construct a database called CSmiRTar (Condition-Specific miRNA Targets). CSmiRTar collects computationally predicted targets of 2588 human miRNAs and 1945 mouse miRNAs from four most widely used miRNA target prediction databases (miRDB, TargetScan, microRNA. org and DIANA-microT) and implements functional filters which allows users to search (i) a miRNA's targets expressed in a specific tissue or/and related to a specific disease, (ii) multiple miRNAs' common targets expressed in a specific tissue or/and related to a specific disease, (iii) a gene's miRNAs related to a specific disease, and (iv) multiple genes' common miRNAs related to a specific disease. We believe that CSmiRTar will be a useful database for biologists to study the molecular mechanisms of post-transcriptional regulation in human or mouse.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] SpeCond: a method to detect condition-specific gene expression
    Florence MG Cavalli
    Richard Bourgon
    Wolfgang Huber
    Juan M Vaquerizas
    Nicholas M Luscombe
    Genome Biology, 12
  • [22] Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data
    Chia-Chun Yang
    Min-Hsuan Chen
    Sheng-Yi Lin
    Erik H. Andrews
    Chao Cheng
    Chun-Chi Liu
    Jeremy J.W. Chen
    BMC Genomics, 18
  • [23] SpeCond: a method to detect condition-specific gene expression
    Cavalli, Florence Mg
    Bourgon, Richard
    Huber, Wolfgang
    Vaquerizas, Juan M.
    Luscombe, Nicholas M.
    GENOME BIOLOGY, 2011, 12 (10):
  • [24] Exploring Condition-Specific Variability in the Ureteral Stent Microbiome
    Mousavi, Ava
    Thaker, Karan N.
    Ackerman, James E.
    Diaz, Niccole
    Martin, Rick
    Tipton, Craig D.
    Tallman, Nick
    Henao, Lina Marcella
    Nassiri, Nima
    Veale, Jeffrey
    Ackerman, Anne Lenore
    Scotland, Kymora B.
    PATHOGENS, 2024, 13 (11):
  • [25] Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data
    Yang, Chia-Chun
    Chen, Min-Hsuan
    Lin, Sheng-Yi
    Andrews, Erik H.
    Cheng, Chao
    Liu, Chun-Chi
    Chen, Jeremy J. W.
    BMC GENOMICS, 2017, 18
  • [26] Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data
    Zacher, Benedikt
    Abnaof, Khalid
    Gade, Stephan
    Younesi, Erfan
    Tresch, Achim
    Froehlich, Holger
    BIOINFORMATICS, 2012, 28 (13) : 1714 - 1720
  • [27] Conditional Convolution Projecting Latent Vectors on Condition-Specific Space
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Shin, Yong-Goo
    Ko, Sung-Jea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 1386 - 1393
  • [28] Generic and condition-specific outcome measures for people with osteoarthritis of the knee
    Brazier, JE
    Harper, R
    Munro, J
    Walters, SJ
    Snaith, ML
    RHEUMATOLOGY, 1999, 38 (09) : 870 - 877
  • [29] Erratum to: SpeCond: a method to detect condition-specific gene expression
    Florence MG Cavalli
    Richard Bourgon
    Juan M Vaquerizas
    Nicholas M Luscombe
    Genome Biology, 12
  • [30] SAMNetWeb: identifying condition-specific networks linking signaling and transcription
    Gosline, Sara J. C.
    Oh, Coyin
    Fraenkel, Ernest
    BIOINFORMATICS, 2015, 31 (07) : 1124 - 1126