Combining Multi-Layer Perceptron and K-means for data clustering with background knowledge

被引:0
|
作者
Guan, Donghai [1 ]
Yuan, Weiwei [1 ]
Lee, Young-Koo [1 ]
Gavrilov, Andrey [1 ]
Lee, Sungyoung [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Engn, Seoul, South Korea
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES | 2007年 / 2卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. To make use of this information, in this paper, we develop a new clustering method "MLP-KMEANS" by combining Multi-Layer Perceptron and K-means. We test our method on several data sets with partial constrains available. Experimental results show that our method can effectively improve clustering accuracy by utilizing available information.
引用
收藏
页码:1220 / +
页数:3
相关论文
共 50 条
  • [31] Collaborative multi-view K-means clustering
    Safa Bettoumi
    Chiraz Jlassi
    Najet Arous
    Soft Computing, 2019, 23 : 937 - 945
  • [32] Structured multi-view k-means clustering
    Zhang, Zitong
    Chen, Xiaojun
    Wang, Chen
    Wang, Ruili
    Song, Wei
    Nie, Feiping
    PATTERN RECOGNITION, 2025, 160
  • [33] Collaborative multi-view K-means clustering
    Bettoumi, Safa
    Jlassi, Chiraz
    Arous, Najet
    SOFT COMPUTING, 2019, 23 (03) : 937 - 945
  • [34] Sparse Multi-View K-Means Clustering
    Yang, Miin-Shen
    Parveen, Shazia
    IEEE ACCESS, 2025, 13 : 46773 - 46793
  • [35] Federated Multi-View K-Means Clustering
    Yang, Miin-Shen
    Sinaga, Kristina P.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2446 - 2459
  • [36] Multi-Core for K-Means Clustering on FPGA
    Canilho, Jose
    Vestias, Mario
    Neto, Horacio
    2016 26TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2016,
  • [37] Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
    HUANG Tian-min
    数学季刊, 2003, (03) : 247 - 257
  • [38] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [39] Imbalanced data optimization combining K-means and SMOTE
    Li W.
    International Journal of Performability Engineering, 2019, 15 (08): : 2173 - 2181
  • [40] An efficient K-means clustering algorithm for tall data
    Capo, Marco
    Perez, Aritz
    Lozano, Jose A.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (03) : 776 - 811