Combining Multi-Layer Perceptron and K-means for data clustering with background knowledge

被引:0
|
作者
Guan, Donghai [1 ]
Yuan, Weiwei [1 ]
Lee, Young-Koo [1 ]
Gavrilov, Andrey [1 ]
Lee, Sungyoung [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Engn, Seoul, South Korea
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES | 2007年 / 2卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. To make use of this information, in this paper, we develop a new clustering method "MLP-KMEANS" by combining Multi-Layer Perceptron and K-means. We test our method on several data sets with partial constrains available. Experimental results show that our method can effectively improve clustering accuracy by utilizing available information.
引用
收藏
页码:1220 / +
页数:3
相关论文
共 50 条
  • [21] K-means*: Clustering by gradual data transformation
    Malinen, Mikko I.
    Mariescu-Istodor, Radu
    Franti, Pasi
    PATTERN RECOGNITION, 2014, 47 (10) : 3376 - 3386
  • [22] Data decomposition for parallel K-means clustering
    Gursoy, A
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2004, 3019 : 241 - 248
  • [23] A new approach to predicting bankruptcy: Combining DEA and multi-layer perceptron
    Mukhopadhyay, Ayan
    Tiwari, Suman
    Narsaria, Ankit
    Karmaker, Bhaskar Roy
    International Journal of Computer Science Issues, 2012, 9 (4 4-2) : 71 - 78
  • [24] Combining K-means and semivariogram-based grid clustering
    Trujillo, M
    Izquierdo, E
    PROCEEDINGS ELMAR-2005, 2005, : 9 - 12
  • [26] A clustering method combining multiple range tests and K-means
    Devika, T. J.
    Ravichandran, J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (21) : 7322 - 7339
  • [27] An investigation of K-means clustering to high and multi-dimensional biological data
    Baridam, Barilee B.
    Ali, M. Montaz
    KYBERNETES, 2013, 42 (04) : 614 - 627
  • [28] The K-Means clustering architecture in the multi-stage data mining process
    Gerardo, BD
    Lee, JW
    Choi, YS
    Lee, M
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 2, 2005, 3481 : 71 - 81
  • [29] Multi-Source Kernel k-means for Clustering Heterogeneous Biomedical Data
    Phoungphol, Piyaphol
    Zhang, Yanqing
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, 2011, : 223 - 228
  • [30] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67