K-means*: Clustering by gradual data transformation

被引:31
|
作者
Malinen, Mikko I. [1 ]
Mariescu-Istodor, Radu [1 ]
Franti, Pasi [1 ]
机构
[1] Univ Eastern Finland, Sch Comp, SPeech & Image Proc Unit, FIN-80101 Joensuu, Finland
基金
芬兰科学院;
关键词
Clustering; K-means; Data transformation;
D O I
10.1016/j.patcog.2014.03.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional approach to clustering is to fit a model (partition or prototypes) for the given data. We propose a completely opposite approach by fitting the data into a given clustering model that is optimal for similar pathological data of equal size and dimensions. We then perform inverse transform from this pathological data back to the original data while refining the optimal clustering structure during the process. The key idea is that we do not need to find optimal global allocation of the prototypes. Instead, we only need to perform local fine-tuning of the clustering prototypes during the transformation in order to preserve the already optimal clustering structure. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3376 / 3386
页数:11
相关论文
共 50 条
  • [1] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [2] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    [J]. IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [3] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [4] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [5] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    [J]. 1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [6] K-means Data Clustering with Memristor Networks
    Jeong, YeonJoo
    Lee, Jihang
    Moon, John
    Shin, Jong Hoon
    Lu, Wei D.
    [J]. NANO LETTERS, 2018, 18 (07) : 4447 - 4453
  • [7] Bagged K-means clustering of metabolome data
    Hageman, J. A.
    van den Berg, R. A.
    Westerhuis, J. A.
    Hoefsloot, H. C. J.
    Smilde, A. K.
    [J]. CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (3-4) : 211 - 220
  • [8] k-Means Clustering of Lines for Big Data
    Marom, Yair
    Feldman, Dan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] K-Means Extensions for Clustering Categorical Data
    Alwersh, Mohammed
    Kovacs, Laszlo
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 492 - 507
  • [10] Data decomposition for parallel K-means clustering
    Gursoy, A
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2004, 3019 : 241 - 248